Ignet
Search (e.g., vaccine, IFNG): Help
About
Home
Introduction
Statistics
Programs
Dignet
Gene
GenePair
BioSummarAI
Help & Docs
Documents
Help
FAQs
Links
Acknowledge
Disclaimer
Contact Us
UM Logo

UMMS Logo

UMMS Logo

Gene Information

Gene symbol: ATP2A1

Gene name: ATPase, Ca++ transporting, cardiac muscle, fast twitch 1

HGNC ID: 811

Synonyms: SERCA1

Related Genes

# Gene Symbol Number of hits
1 ATP2A2 1 hits
2 ATP2A3 1 hits
3 CACNA1G 1 hits
4 CACNA1H 1 hits
5 CACNA2D3 1 hits
6 CACNB2 1 hits
7 GSTCD 1 hits
8 INS 1 hits
9 IRS1 1 hits
10 IRS2 1 hits
11 MYH6 1 hits
12 MYL2 1 hits
13 SAFB 1 hits
14 SLC9A1 1 hits
15 TNNT2 1 hits

Related Sentences

# PMID Sentence
1 9295312 Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins.
2 9295312 Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2).
3 9295312 In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin.
4 9295312 This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence.
5 9295312 Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2.
6 9295312 In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced.
7 9295312 Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins.
8 9295312 Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2).
9 9295312 In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin.
10 9295312 This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence.
11 9295312 Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2.
12 9295312 In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced.
13 9295312 Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins.
14 9295312 Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2).
15 9295312 In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin.
16 9295312 This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence.
17 9295312 Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2.
18 9295312 In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced.
19 9295312 Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins.
20 9295312 Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2).
21 9295312 In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin.
22 9295312 This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence.
23 9295312 Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2.
24 9295312 In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced.
25 18193643 Defects in ATP2A1 encoding SERCA1 cause recessive Brody myopathy, mutations in ATP2A2 coding for SERCA2 underlie a dominant skin disease, Darier disease and its clinical variants.
26 18193643 Gene-targeting studies in mouse confirmed the expected function of these isoforms in some cases, but also resulted in unexpected phenotypes: SERCA1 null mutants die from respiratory failure, SERCA2 heterozygous mutant mice develop skin cancer with age and SERCA3 null mice display no diabetes.
27 18193643 Defects in ATP2A1 encoding SERCA1 cause recessive Brody myopathy, mutations in ATP2A2 coding for SERCA2 underlie a dominant skin disease, Darier disease and its clinical variants.
28 18193643 Gene-targeting studies in mouse confirmed the expected function of these isoforms in some cases, but also resulted in unexpected phenotypes: SERCA1 null mutants die from respiratory failure, SERCA2 heterozygous mutant mice develop skin cancer with age and SERCA3 null mice display no diabetes.
29 21666035 Expression of genes encoding various L-type Ca(2+) channel proteins (Cacnb2) and cardiac muscle proteins (Myl2 and Atp2a1) were downregulated in GK-HFD compared with GK-LFD rats.
30 22009485 Myh6, Tnnt2, Cacna2d3, Slc9a1, and Atp2a2 were downregulated while Myl2, Cacna1g, Cacna1h, and Atp2a1 were upregulated in ZDF ventricle compared to controls.
31 23883681 No differences in SERCA1 and SERCA2 (Ca2+ uptake) protein levels were evident between CONT and DIA, whereas ryanodine receptor (Ca2+ release) protein level and mitochondrial oxidative enzyme activity (succinate dehydrogenase) were decreased in DIA (P < 0.05).