Ignet
Search (e.g., vaccine, IFNG): Help
About
Home
Introduction
Statistics
Programs
Dignet
Gene
GenePair
BioSummarAI
Help & Docs
Documents
Help
FAQs
Links
Acknowledge
Disclaimer
Contact Us
UM Logo

UMMS Logo

UMMS Logo

Gene Information

Gene symbol: CYP51A1

Gene name: cytochrome P450, family 51, subfamily A, polypeptide 1

HGNC ID: 2649

Synonyms: CP51, CYPL1, P450L1, LDM, P450-14DM

Related Genes

# Gene Symbol Number of hits
1 AKT1 1 hits
2 HTR2B 1 hits
3 INS 1 hits
4 IRS1 1 hits
5 IRS2 1 hits
6 PSPH 1 hits
7 SLC2A4 1 hits

Related Sentences

# PMID Sentence
1 1328294 Insulin treatment of diabetic animals for 5 d restored glucose transport activity, GLUT-4 protein, and GLUT-4 phosphorylation to control levels whereas vanadate and phlorizin were ineffective.
2 1328294 In control adipocytes, insulin promoted GLUT-4 translocation from the low density microsomal (LDM) pool to the plasma membranes (PM) and decreased the state of GLUT-4 phosphorylation.
3 1328294 In adipocytes isolated from the diabetic rats, insulin failed to stimulate GLUT-4 translocation and to decrease GLUT-4 phosphorylation.
4 1328294 To explore the mechanism of the diabetes-induced increases in the GLUT-4 phosphorylation, we investigated phosphoserine phosphatase (PSPase) activities using 32P-labeled GLUT-4 and phosphorylase "a" as substrates.
5 1328294 Although reduced cytosolic PSPase activity correlated with an inadequate dephosphorylation of LDM GLUT-4, the existence of highly phosphorylated PM GLUT-4 in the presence of increased particulate PSPase activity required additional explanation.
6 1328294 Highly active diabetic particulate PSPase, which dephosphorylated control GLUT-4 and phosphorylase a, failed to dephosphorylate PM GLUT-4 from diabetic rats.
7 1328294 These data suggest that PM GLUT-4 from diabetic rats is unable to interact with PSPase or that its phosphorylation sites are not accessible to PSPase action.
8 1328294 In contrast to normal cells, insulin failed to promote GLUT-4 recruitment to the plasma membranes and its dephosphorylation in diabetic adipocytes.
9 11375348 Subcellular localization of insulin receptor substrate family proteins associated with phosphatidylinositol 3-kinase activity and alterations in lipolysis in primary mouse adipocytes from IRS-1 null mice.
10 11375348 To clarify the roles of insulin receptor substrate (IRS) family proteins in phosphatidylinositol (PI) 3-kinase activation and insulin actions in adipocytes, we investigated the intracellular localization of IRS family proteins and PI 3-kinase activation in response to insulin by fractionation of mouse adipocytes from wild-type and IRS-1 null mice.
11 11375348 In adipocytes from wild-type mice, tyrosine-phosphorylated IRS-1 and IRS-2, which were found to associate with PI 3-kinase in response to insulin, were detected in the plasma membrane (PM) and low-density microsome (LDM) fractions.
12 11375348 In adipocytes from IRS-1-null mice, insulin-stimulated PI 3-kinase activity in anti-phosphotyrosine (alphaPY) immunoprecipitates in the LDM fraction was almost exclusively mediated via IRS-2 and was reduced to 25%; however, insulin-stimulated PI 3-kinase activity in the PM fraction was primarily mediated via IRS-3 and was reduced to 60%.
13 11375348 To determine the potential functional impact of the distinct subcellular localization of IRSs and associating PI 3-kinase activity on adipocyte-specific metabolic actions, we examined lipolysis in IRS-1 null mice.
14 11375348 The antilipolytic effect of insulin in IRS-1 null adipocytes, however, was comparable to that in wild-type mice.
15 11375348 Thus, discordance between these two insulin actions as well as the transcriptional and translational effect (HSL mRNA and protein regulation) and the PM effect (antilipolysis) of insulin may be explained by distinct roles of both PI 3-kinase activity associated with IRS-1/IRS-2 and PI 3-kinase activity associated with IRS-3 in insulin actions related to their subcellular localization.
16 11375348 Subcellular localization of insulin receptor substrate family proteins associated with phosphatidylinositol 3-kinase activity and alterations in lipolysis in primary mouse adipocytes from IRS-1 null mice.
17 11375348 To clarify the roles of insulin receptor substrate (IRS) family proteins in phosphatidylinositol (PI) 3-kinase activation and insulin actions in adipocytes, we investigated the intracellular localization of IRS family proteins and PI 3-kinase activation in response to insulin by fractionation of mouse adipocytes from wild-type and IRS-1 null mice.
18 11375348 In adipocytes from wild-type mice, tyrosine-phosphorylated IRS-1 and IRS-2, which were found to associate with PI 3-kinase in response to insulin, were detected in the plasma membrane (PM) and low-density microsome (LDM) fractions.
19 11375348 In adipocytes from IRS-1-null mice, insulin-stimulated PI 3-kinase activity in anti-phosphotyrosine (alphaPY) immunoprecipitates in the LDM fraction was almost exclusively mediated via IRS-2 and was reduced to 25%; however, insulin-stimulated PI 3-kinase activity in the PM fraction was primarily mediated via IRS-3 and was reduced to 60%.
20 11375348 To determine the potential functional impact of the distinct subcellular localization of IRSs and associating PI 3-kinase activity on adipocyte-specific metabolic actions, we examined lipolysis in IRS-1 null mice.
21 11375348 The antilipolytic effect of insulin in IRS-1 null adipocytes, however, was comparable to that in wild-type mice.
22 11375348 Thus, discordance between these two insulin actions as well as the transcriptional and translational effect (HSL mRNA and protein regulation) and the PM effect (antilipolysis) of insulin may be explained by distinct roles of both PI 3-kinase activity associated with IRS-1/IRS-2 and PI 3-kinase activity associated with IRS-3 in insulin actions related to their subcellular localization.
23 22975078 Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes.
24 22975078 In this study, we investigate the mechanism of insulin desensitization caused by 5-HT.
25 22975078 In 3T3-L1 adipocytes, 5-HT treatment induced the translocation of insulin receptor substrate-1 (IRS-1) from low density microsome (LDM), the important intracellular compartment for its functions, to cytosol, inducing IRS-1 ubiquitination and degradation.
26 22975078 Moreover, inhibition of 5-HT-stimulated Akt activation by either ketanserin (a specific 5-HT2A receptor antagonist) or knocking-down the expression of 5-HT2A receptor promoted 5-HT-stimulated IRS-1 dissociation from 14-3-3β in LDM, leading to drastic ubiquitination.
27 22975078 Interestingly, sarpogrelate, another antagonist of 5-HT2A receptor, protected IRS-1 from degradation through activation of Akt.
28 22975078 This implicates the importance of Akt activation in extending IRS-1 life span through maintaining their optimal sub-location into adipocytes.
29 22975078 Taken together, this study suggest that activation of Akt may be able to compensate the adverse effects of 5-HT by stabilizing IRS-1 in LDM.