# |
PMID |
Sentence |
1 |
10503988
|
To examine the mechanism behind a decrease in type 1 iodothyronine deiodinase (D1) gene expression in diabetes mellitus, we evaluated the effect of administering T3 and/or insulin on D1 activity and the mRNA levels in the liver of streptozotocin (STZ)-induced diabetic rats.
|
2 |
15331760
|
We have identified a cell type-specific, negative thyroid hormone-responsive element in the human type 1 iodothyronine deiodinase (hdio1) gene.
|
3 |
15591136
|
They also have markedly increased hepatic type 1 iodothyronine deiodinase (D1) mRNA and enzyme activity (4- to 5-fold), whereas other hepatic T3-responsive genes, such as Spot14 and mitochondrial alpha-glycerol phosphate dehydrogenase (alpha-GPD), are only 0.7-fold and 1.7-fold that of wild-type littermates (TR alpha1+/+).
|
4 |
15591136
|
Hypothyroidism decreased hepatic D1, Spot14, and alpha-GPD mRNA to similar levels in TR alpha1+/+ and TR alpha1(PV/+) mice, whereas T3 administration caused an approximately 175-fold elevation of D1 mRNA but only a 3- to 6-fold increases in Spot14 and alpha-GPD mRNAs.
|
5 |
15591136
|
Interestingly, the hypothyroidism-induced increase in cerebrocortical type 2 iodothyronine deiodinase activity was 3 times greater in the TR alpha1(PV/+) mice, and these mice had no T3-dependent induction of type 3 iodothyronine deiodinase.
|
6 |
15591136
|
Thus, the marked responsiveness of hepatic D1 to T3 relative to other genes, such as Spot14 and alpha-GPD, explains the relatively large effect of the modest increase in serum T3 in the TR alpha1(PV/+) mice, and TR alpha plays a key role in T3-dependent positive and negative regulation of the deiodinases in the cerebral cortex.
|
7 |
15591136
|
They also have markedly increased hepatic type 1 iodothyronine deiodinase (D1) mRNA and enzyme activity (4- to 5-fold), whereas other hepatic T3-responsive genes, such as Spot14 and mitochondrial alpha-glycerol phosphate dehydrogenase (alpha-GPD), are only 0.7-fold and 1.7-fold that of wild-type littermates (TR alpha1+/+).
|
8 |
15591136
|
Hypothyroidism decreased hepatic D1, Spot14, and alpha-GPD mRNA to similar levels in TR alpha1+/+ and TR alpha1(PV/+) mice, whereas T3 administration caused an approximately 175-fold elevation of D1 mRNA but only a 3- to 6-fold increases in Spot14 and alpha-GPD mRNAs.
|
9 |
15591136
|
Interestingly, the hypothyroidism-induced increase in cerebrocortical type 2 iodothyronine deiodinase activity was 3 times greater in the TR alpha1(PV/+) mice, and these mice had no T3-dependent induction of type 3 iodothyronine deiodinase.
|
10 |
15591136
|
Thus, the marked responsiveness of hepatic D1 to T3 relative to other genes, such as Spot14 and alpha-GPD, explains the relatively large effect of the modest increase in serum T3 in the TR alpha1(PV/+) mice, and TR alpha plays a key role in T3-dependent positive and negative regulation of the deiodinases in the cerebral cortex.
|
11 |
19095741
|
The Dio3 mRNA expression pattern in the greater epithelial ridge, stria vascularis, and spiral ganglion partly overlaps with that of thyroid hormone receptor beta (TRbeta), the T(3) receptor that is primarily responsible for auditory development.
|
12 |
19819956
|
Knockdown of the type 3 iodothyronine deiodinase (D3) interacting protein peroxiredoxin 3 decreases D3-mediated deiodination in intact cells.
|
13 |
20881246
|
Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice.
|
14 |
21679772
|
Whereas both Dio2 and Dio3 are transcriptionally regulated, ubiquitination of D2 is a switch mechanism that controls D2 activity and intracellular T3 production.
|
15 |
21679772
|
Inactivation involves disruption of the D2:D2 dimer and can be reversed via two ubiquitin-specific proteases, USP20 and USP33, rescuing catalytic activity and T3 production.
|
16 |
21712363
|
The Dio2 and Dio3 genes undergo transcriptional regulation throughout embryonic development, childhood, and adult life.
|
17 |
22147956
|
The search for the genes responsible has revealed several candidates, including the genes for phosphodiesterase 8B, iodothyronine deiodinase 1, F-actin-capping protein subunit beta and the TSH receptor; however, each of these only contributes a small amount to the variability of hormone concentrations, suggesting that further genes and mechanisms of genetic influence are yet to be discovered.
|
18 |
22147956
|
Some genes known to influence thyroid function, including iodothyronine deiodinase 2 and the TSH receptor, have been shown to influence a wide range of clinical and developmental phenotypes from bone health to neurological development and longevity; such observations will help us understand the complex action of thyroid hormones on individual tissues.
|
19 |
22147956
|
The search for the genes responsible has revealed several candidates, including the genes for phosphodiesterase 8B, iodothyronine deiodinase 1, F-actin-capping protein subunit beta and the TSH receptor; however, each of these only contributes a small amount to the variability of hormone concentrations, suggesting that further genes and mechanisms of genetic influence are yet to be discovered.
|
20 |
22147956
|
Some genes known to influence thyroid function, including iodothyronine deiodinase 2 and the TSH receptor, have been shown to influence a wide range of clinical and developmental phenotypes from bone health to neurological development and longevity; such observations will help us understand the complex action of thyroid hormones on individual tissues.
|