# |
PMID |
Sentence |
1 |
9176184
|
In contrast, the phosphorylation state of the eIF-4E binding protein 1 (4E-BP1) was changed with nutritional state.
|
2 |
9176184
|
The increased association of 4E-BP1 with eIF-4E was completely reversed within 3 h of feeding.
|
3 |
9176184
|
Starvation and refeeding also altered the amount of eIF-4G that coimmunoprecipitated with eIF-4E.
|
4 |
9176184
|
However, in contrast to the results obtained for 4E-BP1, starvation decreased the amount of eIF-4G recovered in the eIF-4E immunoprecipitate, suggesting that starvation causes a decrease in the formation of the active eIF-4F complex.
|
5 |
9176184
|
The alterations in 4E-BP1 phosphorylation and association of 4E-BP1 and eIF-4G with eIF-4E observed in control mice in response to starvation and refeeding were also observed in diabetic mice exhibiting characteristics of type I or type II diabetes subjected to the same conditions, suggesting that insulin alone does not mediate the observed changes.
|
6 |
16567544
|
To assess genetic variation underlying both age-of-onset QTL and our previous type 2 diabetes linkage in a 3.87-Mb interval, we explored 36 single nucleotide polymorphisms (SNPs) in two biologically relevant candidate genes for glucose homeostasis, kininogen (KNG1), and eukaryotic translation initiation factor 4alpha2 (EIF4A2).
|
7 |
19074679
|
Activation of the mammalian target of rapamycin complex 1 (mTORC1) causes the dissociation of eukaryotic initiation factor 4E complex (eIF4E)-binding protein 1 (4E-BP1) from eIF4E, leading to increased eIF4F complex formation. mTORC1 positively regulates protein synthesis and is implicated in several diseases including cardiac hypertrophy, a potentially fatal disorder involving increased cardiomyocyte size.
|
8 |
19074679
|
The importance of 4E-BP1 in mTORC1-regulated protein synthesis was investigated by overexpressing 4E-BP1, which blocks eIF4F formation in isolated primary cardiomyocytes without affecting other targets for mTORC1 signaling.
|
9 |
19074679
|
Interestingly, blocking eIF4F formation did not impair the degree of activation of overall protein synthesis by the hypertrophic agent phenylephrine (PE), which, furthermore, remained dependent on mTORC1.
|
10 |
19074679
|
Overexpressing 4E-BP1 did diminish the PE-stimulated synthesis of luciferase encoded by structured mRNAs, confirming that such mRNAs do require eIF4F for their translation in cardiomyocytes.
|
11 |
19074679
|
These data imply that the substantial inhibition of cardiomyocyte protein synthesis and growth caused by inhibiting mTORC1 cannot be attributed to the activation of 4E-BP1 or loss of eIF4F complexes.
|
12 |
19074679
|
Activation of the mammalian target of rapamycin complex 1 (mTORC1) causes the dissociation of eukaryotic initiation factor 4E complex (eIF4E)-binding protein 1 (4E-BP1) from eIF4E, leading to increased eIF4F complex formation. mTORC1 positively regulates protein synthesis and is implicated in several diseases including cardiac hypertrophy, a potentially fatal disorder involving increased cardiomyocyte size.
|
13 |
19074679
|
The importance of 4E-BP1 in mTORC1-regulated protein synthesis was investigated by overexpressing 4E-BP1, which blocks eIF4F formation in isolated primary cardiomyocytes without affecting other targets for mTORC1 signaling.
|
14 |
19074679
|
Interestingly, blocking eIF4F formation did not impair the degree of activation of overall protein synthesis by the hypertrophic agent phenylephrine (PE), which, furthermore, remained dependent on mTORC1.
|
15 |
19074679
|
Overexpressing 4E-BP1 did diminish the PE-stimulated synthesis of luciferase encoded by structured mRNAs, confirming that such mRNAs do require eIF4F for their translation in cardiomyocytes.
|
16 |
19074679
|
These data imply that the substantial inhibition of cardiomyocyte protein synthesis and growth caused by inhibiting mTORC1 cannot be attributed to the activation of 4E-BP1 or loss of eIF4F complexes.
|
17 |
19074679
|
Activation of the mammalian target of rapamycin complex 1 (mTORC1) causes the dissociation of eukaryotic initiation factor 4E complex (eIF4E)-binding protein 1 (4E-BP1) from eIF4E, leading to increased eIF4F complex formation. mTORC1 positively regulates protein synthesis and is implicated in several diseases including cardiac hypertrophy, a potentially fatal disorder involving increased cardiomyocyte size.
|
18 |
19074679
|
The importance of 4E-BP1 in mTORC1-regulated protein synthesis was investigated by overexpressing 4E-BP1, which blocks eIF4F formation in isolated primary cardiomyocytes without affecting other targets for mTORC1 signaling.
|
19 |
19074679
|
Interestingly, blocking eIF4F formation did not impair the degree of activation of overall protein synthesis by the hypertrophic agent phenylephrine (PE), which, furthermore, remained dependent on mTORC1.
|
20 |
19074679
|
Overexpressing 4E-BP1 did diminish the PE-stimulated synthesis of luciferase encoded by structured mRNAs, confirming that such mRNAs do require eIF4F for their translation in cardiomyocytes.
|
21 |
19074679
|
These data imply that the substantial inhibition of cardiomyocyte protein synthesis and growth caused by inhibiting mTORC1 cannot be attributed to the activation of 4E-BP1 or loss of eIF4F complexes.
|
22 |
19074679
|
Activation of the mammalian target of rapamycin complex 1 (mTORC1) causes the dissociation of eukaryotic initiation factor 4E complex (eIF4E)-binding protein 1 (4E-BP1) from eIF4E, leading to increased eIF4F complex formation. mTORC1 positively regulates protein synthesis and is implicated in several diseases including cardiac hypertrophy, a potentially fatal disorder involving increased cardiomyocyte size.
|
23 |
19074679
|
The importance of 4E-BP1 in mTORC1-regulated protein synthesis was investigated by overexpressing 4E-BP1, which blocks eIF4F formation in isolated primary cardiomyocytes without affecting other targets for mTORC1 signaling.
|
24 |
19074679
|
Interestingly, blocking eIF4F formation did not impair the degree of activation of overall protein synthesis by the hypertrophic agent phenylephrine (PE), which, furthermore, remained dependent on mTORC1.
|
25 |
19074679
|
Overexpressing 4E-BP1 did diminish the PE-stimulated synthesis of luciferase encoded by structured mRNAs, confirming that such mRNAs do require eIF4F for their translation in cardiomyocytes.
|
26 |
19074679
|
These data imply that the substantial inhibition of cardiomyocyte protein synthesis and growth caused by inhibiting mTORC1 cannot be attributed to the activation of 4E-BP1 or loss of eIF4F complexes.
|
27 |
19074679
|
Activation of the mammalian target of rapamycin complex 1 (mTORC1) causes the dissociation of eukaryotic initiation factor 4E complex (eIF4E)-binding protein 1 (4E-BP1) from eIF4E, leading to increased eIF4F complex formation. mTORC1 positively regulates protein synthesis and is implicated in several diseases including cardiac hypertrophy, a potentially fatal disorder involving increased cardiomyocyte size.
|
28 |
19074679
|
The importance of 4E-BP1 in mTORC1-regulated protein synthesis was investigated by overexpressing 4E-BP1, which blocks eIF4F formation in isolated primary cardiomyocytes without affecting other targets for mTORC1 signaling.
|
29 |
19074679
|
Interestingly, blocking eIF4F formation did not impair the degree of activation of overall protein synthesis by the hypertrophic agent phenylephrine (PE), which, furthermore, remained dependent on mTORC1.
|
30 |
19074679
|
Overexpressing 4E-BP1 did diminish the PE-stimulated synthesis of luciferase encoded by structured mRNAs, confirming that such mRNAs do require eIF4F for their translation in cardiomyocytes.
|
31 |
19074679
|
These data imply that the substantial inhibition of cardiomyocyte protein synthesis and growth caused by inhibiting mTORC1 cannot be attributed to the activation of 4E-BP1 or loss of eIF4F complexes.
|
32 |
20431808
|
These 50 functional genes are responsible for diabetic nephropathy; of these 50, some of the genes which are more expressed and responsible are AGXT: Alanine-glyoxylate aminotransferase, RHOD: Ras homolog gene family, CAPN6: Calpain 6, EFNB2: Ephrin-B2, ANXA7: Annexin A7, PEG10: Paternally expressed 10, DPP4: Dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2), ENSA: Endosulfine alpha, IGFBP2: Insulin-like growth factor binding protein 2, 36kDa, CENPB: Centromere protein B, 80kDa, MLL3: Myeloid/lymphoid or mixed-lineage leukemia 3, BDNF: Brain-derived neurotrophic factor, EIF4A2: Eukaryotic translation initiation factor 4A, isoform 2, PPP2R1A: Protein phosphatase 2 (formerly 2A), regulatory subunit A, alpha isoform.
|