# |
PMID |
Sentence |
1 |
10828489
|
The actions of GLP-2 are transduced by a recently cloned glucagon-like peptide-2 receptor (GLP-2R) that represents a new member of the G protein-coupled receptor superfamily.
|
2 |
10828489
|
The GLP-2R is expressed in a highly tissue-specific manner predominantly in the gastrointestinal tract and GLP-2R activation is coupled to increased adenylate cyclase activity.
|
3 |
10828489
|
The actions of GLP-2 are transduced by a recently cloned glucagon-like peptide-2 receptor (GLP-2R) that represents a new member of the G protein-coupled receptor superfamily.
|
4 |
10828489
|
The GLP-2R is expressed in a highly tissue-specific manner predominantly in the gastrointestinal tract and GLP-2R activation is coupled to increased adenylate cyclase activity.
|
5 |
10940305
|
The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway.
|
6 |
10940305
|
Because GLP-2 decreases mortality and reduces intestinal apoptosis in rodents after experimental injury, we examined whether GLP-2R signaling directly modifies the cellular response to external injury.
|
7 |
10940305
|
We show here that activation of GLP-2R signaling inhibits cycloheximide-induced apoptosis in baby hamster kidney fibroblasts expressing a transfected GLP-2 receptor.
|
8 |
10940305
|
GLP-2 reduced DNA fragmentation and improved cell survival, in association with reduced activation of caspase-3 and decreased poly(ADP-ribose) polymerase cleavage and reduced caspase-8 and caspase-9-like activities.
|
9 |
10940305
|
Both GLP-2 and forskolin reduced mitochondrial cytochrome c release and decreased the cycloheximide-induced cleavage of caspase-3 in the presence or absence of the PKA inhibitor H-89.
|
10 |
10940305
|
These findings provide evidence that signaling through G protein-coupled receptors of the glucagon superfamily is directly linked to regulation of apoptosis and suggest the existence of a cAMP-dependent protein kinase-, phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-independent pathway coupling GLP-2R signaling to caspase inhibition and cell survival.
|
11 |
10940305
|
The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway.
|
12 |
10940305
|
Because GLP-2 decreases mortality and reduces intestinal apoptosis in rodents after experimental injury, we examined whether GLP-2R signaling directly modifies the cellular response to external injury.
|
13 |
10940305
|
We show here that activation of GLP-2R signaling inhibits cycloheximide-induced apoptosis in baby hamster kidney fibroblasts expressing a transfected GLP-2 receptor.
|
14 |
10940305
|
GLP-2 reduced DNA fragmentation and improved cell survival, in association with reduced activation of caspase-3 and decreased poly(ADP-ribose) polymerase cleavage and reduced caspase-8 and caspase-9-like activities.
|
15 |
10940305
|
Both GLP-2 and forskolin reduced mitochondrial cytochrome c release and decreased the cycloheximide-induced cleavage of caspase-3 in the presence or absence of the PKA inhibitor H-89.
|
16 |
10940305
|
These findings provide evidence that signaling through G protein-coupled receptors of the glucagon superfamily is directly linked to regulation of apoptosis and suggest the existence of a cAMP-dependent protein kinase-, phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-independent pathway coupling GLP-2R signaling to caspase inhibition and cell survival.
|
17 |
10940305
|
The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway.
|
18 |
10940305
|
Because GLP-2 decreases mortality and reduces intestinal apoptosis in rodents after experimental injury, we examined whether GLP-2R signaling directly modifies the cellular response to external injury.
|
19 |
10940305
|
We show here that activation of GLP-2R signaling inhibits cycloheximide-induced apoptosis in baby hamster kidney fibroblasts expressing a transfected GLP-2 receptor.
|
20 |
10940305
|
GLP-2 reduced DNA fragmentation and improved cell survival, in association with reduced activation of caspase-3 and decreased poly(ADP-ribose) polymerase cleavage and reduced caspase-8 and caspase-9-like activities.
|
21 |
10940305
|
Both GLP-2 and forskolin reduced mitochondrial cytochrome c release and decreased the cycloheximide-induced cleavage of caspase-3 in the presence or absence of the PKA inhibitor H-89.
|
22 |
10940305
|
These findings provide evidence that signaling through G protein-coupled receptors of the glucagon superfamily is directly linked to regulation of apoptosis and suggest the existence of a cAMP-dependent protein kinase-, phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-independent pathway coupling GLP-2R signaling to caspase inhibition and cell survival.
|
23 |
10940305
|
The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway.
|
24 |
10940305
|
Because GLP-2 decreases mortality and reduces intestinal apoptosis in rodents after experimental injury, we examined whether GLP-2R signaling directly modifies the cellular response to external injury.
|
25 |
10940305
|
We show here that activation of GLP-2R signaling inhibits cycloheximide-induced apoptosis in baby hamster kidney fibroblasts expressing a transfected GLP-2 receptor.
|
26 |
10940305
|
GLP-2 reduced DNA fragmentation and improved cell survival, in association with reduced activation of caspase-3 and decreased poly(ADP-ribose) polymerase cleavage and reduced caspase-8 and caspase-9-like activities.
|
27 |
10940305
|
Both GLP-2 and forskolin reduced mitochondrial cytochrome c release and decreased the cycloheximide-induced cleavage of caspase-3 in the presence or absence of the PKA inhibitor H-89.
|
28 |
10940305
|
These findings provide evidence that signaling through G protein-coupled receptors of the glucagon superfamily is directly linked to regulation of apoptosis and suggest the existence of a cAMP-dependent protein kinase-, phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-independent pathway coupling GLP-2R signaling to caspase inhibition and cell survival.
|
29 |
11089553
|
To ascertain whether the GLP-2/GLP-2 receptor axis is expressed and functional in the developing intestine, we have studied the synthesis of GLP-2 and the expression of the GLP-2 receptor (GLP-2R) in the fetal and neonatal rat gut.
|
30 |
11089553
|
Analysis of GLP-2 receptor expression by RT-PCR demonstrated GLP-2R messenger RNA transcripts in fetal intestine and in neonatal stomach, jejunum, ileum, and colon.
|
31 |
11089553
|
To ascertain whether the GLP-2/GLP-2 receptor axis is expressed and functional in the developing intestine, we have studied the synthesis of GLP-2 and the expression of the GLP-2 receptor (GLP-2R) in the fetal and neonatal rat gut.
|
32 |
11089553
|
Analysis of GLP-2 receptor expression by RT-PCR demonstrated GLP-2R messenger RNA transcripts in fetal intestine and in neonatal stomach, jejunum, ileum, and colon.
|
33 |
11262390
|
Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling.
|
34 |
11262390
|
We studied the sites of endogenous GLP-2 receptor (GLP-2R) expression, the localization of transgenic LacZ expression under the control of the mouse GLP-2R promoter, and the actions of GLP-2 in the murine CNS.
|
35 |
11262390
|
Disruption of glucagon-like peptide-1 receptor (GLP-1R) signaling with the antagonist exendin-(9-39) in wild-type mice or genetically in GLP-1R(-)/- mice significantly potentiated the anorectic actions of GLP-2.
|
36 |
11262390
|
These findings illustrate that CNS GLP-2R expression is not restricted to hypothalamic nuclei and demonstrate that the anorectic effects of GLP-2 are transient and modulated by the presence or absence of GLP-1R signaling in vivo.
|
37 |
11262390
|
Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling.
|
38 |
11262390
|
We studied the sites of endogenous GLP-2 receptor (GLP-2R) expression, the localization of transgenic LacZ expression under the control of the mouse GLP-2R promoter, and the actions of GLP-2 in the murine CNS.
|
39 |
11262390
|
Disruption of glucagon-like peptide-1 receptor (GLP-1R) signaling with the antagonist exendin-(9-39) in wild-type mice or genetically in GLP-1R(-)/- mice significantly potentiated the anorectic actions of GLP-2.
|
40 |
11262390
|
These findings illustrate that CNS GLP-2R expression is not restricted to hypothalamic nuclei and demonstrate that the anorectic effects of GLP-2 are transient and modulated by the presence or absence of GLP-1R signaling in vivo.
|
41 |
11978789
|
Glucagon-like peptide-2 receptor activation engages bad and glycogen synthase kinase-3 in a protein kinase A-dependent manner and prevents apoptosis following inhibition of phosphatidylinositol 3-kinase.
|
42 |
11978789
|
We now demonstrate that GLP-2, in a cycloheximide-insensitive manner, enhanced survival in baby hamster kidney cells stably transfected with the rat GLP-2R; reduced mitochondrial cytochrome c efflux; and attenuated the caspase-dependent cleavage of Akt, poly(ADP-ribose) polymerase, and beta-catenin following inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002.
|
43 |
11978789
|
The prosurvival effects of GLP-2 on LY294002-induced cell death were independent of Akt, p90(Rsk), or p70 S6 kinase activation; were mimicked by forskolin; and were abrogated by inhibition of protein kinase A (PKA) activity.
|
44 |
11978789
|
GLP-2 inhibited activation of glycogen synthase kinase-3 (GSK-3) through phosphorylation at Ser(21) in GSK-3alpha and at Ser(9) in GSK-3beta in a PI3K-independent, PKA-dependent manner.
|
45 |
11978789
|
GLP-2 reduced LY294002-induced mitochondrial association of endogenous Bad and Bax and stimulated phosphorylation of a transfected Bad fusion protein at Ser(155) in a PI3K-independent, but H89-sensitive manner, a modification known to suppress Bad pro-apoptotic activity.
|
46 |
11978789
|
These results suggest that GLP-2R signaling enhances cell survival independently of PI3K/Akt by inhibiting the activity of a subset of pro-apoptotic downstream targets of Akt in a PKA-dependent manner.
|
47 |
11978789
|
Glucagon-like peptide-2 receptor activation engages bad and glycogen synthase kinase-3 in a protein kinase A-dependent manner and prevents apoptosis following inhibition of phosphatidylinositol 3-kinase.
|
48 |
11978789
|
We now demonstrate that GLP-2, in a cycloheximide-insensitive manner, enhanced survival in baby hamster kidney cells stably transfected with the rat GLP-2R; reduced mitochondrial cytochrome c efflux; and attenuated the caspase-dependent cleavage of Akt, poly(ADP-ribose) polymerase, and beta-catenin following inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002.
|
49 |
11978789
|
The prosurvival effects of GLP-2 on LY294002-induced cell death were independent of Akt, p90(Rsk), or p70 S6 kinase activation; were mimicked by forskolin; and were abrogated by inhibition of protein kinase A (PKA) activity.
|
50 |
11978789
|
GLP-2 inhibited activation of glycogen synthase kinase-3 (GSK-3) through phosphorylation at Ser(21) in GSK-3alpha and at Ser(9) in GSK-3beta in a PI3K-independent, PKA-dependent manner.
|
51 |
11978789
|
GLP-2 reduced LY294002-induced mitochondrial association of endogenous Bad and Bax and stimulated phosphorylation of a transfected Bad fusion protein at Ser(155) in a PI3K-independent, but H89-sensitive manner, a modification known to suppress Bad pro-apoptotic activity.
|
52 |
11978789
|
These results suggest that GLP-2R signaling enhances cell survival independently of PI3K/Akt by inhibiting the activity of a subset of pro-apoptotic downstream targets of Akt in a PKA-dependent manner.
|
53 |
11978789
|
Glucagon-like peptide-2 receptor activation engages bad and glycogen synthase kinase-3 in a protein kinase A-dependent manner and prevents apoptosis following inhibition of phosphatidylinositol 3-kinase.
|
54 |
11978789
|
We now demonstrate that GLP-2, in a cycloheximide-insensitive manner, enhanced survival in baby hamster kidney cells stably transfected with the rat GLP-2R; reduced mitochondrial cytochrome c efflux; and attenuated the caspase-dependent cleavage of Akt, poly(ADP-ribose) polymerase, and beta-catenin following inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002.
|
55 |
11978789
|
The prosurvival effects of GLP-2 on LY294002-induced cell death were independent of Akt, p90(Rsk), or p70 S6 kinase activation; were mimicked by forskolin; and were abrogated by inhibition of protein kinase A (PKA) activity.
|
56 |
11978789
|
GLP-2 inhibited activation of glycogen synthase kinase-3 (GSK-3) through phosphorylation at Ser(21) in GSK-3alpha and at Ser(9) in GSK-3beta in a PI3K-independent, PKA-dependent manner.
|
57 |
11978789
|
GLP-2 reduced LY294002-induced mitochondrial association of endogenous Bad and Bax and stimulated phosphorylation of a transfected Bad fusion protein at Ser(155) in a PI3K-independent, but H89-sensitive manner, a modification known to suppress Bad pro-apoptotic activity.
|
58 |
11978789
|
These results suggest that GLP-2R signaling enhances cell survival independently of PI3K/Akt by inhibiting the activity of a subset of pro-apoptotic downstream targets of Akt in a PKA-dependent manner.
|
59 |
15059959
|
We identified proglucagon and GLP-2 receptor (GLP-2R) mRNA transcripts by RT-PCR in multiple regions of the developing and adult rat central nervous system.
|
60 |
15059959
|
The actions of GLP-2 were independent of the GLP-1R antagonist exendin-(9-39), and GLP-2 stimulated cAMP accumulation in hippocampal cell cultures from both wild-type and GLP-1R(-/-) mice.
|
61 |
15059959
|
GLP-2 significantly reduced glutamate-induced excitotoxic injury in hippocampal cells via a protein kinase A-dependent pathway, but had no effect on the rate of cell proliferation.
|
62 |
15169869
|
The intestinotrophic and cytoprotective actions of glucagon-like peptide-2 (GLP-2) are mediated by the GLP-2 receptor (GLP-2R), a member of the class II glucagon-secretin G protein-coupled receptor superfamily.
|
63 |
15169869
|
Although GLP-2R endocytosis was dependent on lipid raft integrity, the receptor transiently associated with green fluorescent protein tagged-early endosome antigen 1-positive vesicles and inhibitors of endosomal acidification attenuated the reappearance of the GLP-2R on the cell surface.
|
64 |
15169869
|
Our data demonstrate that GLP-2R desensitization and raft-dependent trafficking represent distinct and independent cellular mechanisms and provide new evidence implicating the importance of a clathrin- and dynamin-independent, lipid raft-dependent pathway for homologous G protein-coupled receptor internalization.
|
65 |
15169869
|
The intestinotrophic and cytoprotective actions of glucagon-like peptide-2 (GLP-2) are mediated by the GLP-2 receptor (GLP-2R), a member of the class II glucagon-secretin G protein-coupled receptor superfamily.
|
66 |
15169869
|
Although GLP-2R endocytosis was dependent on lipid raft integrity, the receptor transiently associated with green fluorescent protein tagged-early endosome antigen 1-positive vesicles and inhibitors of endosomal acidification attenuated the reappearance of the GLP-2R on the cell surface.
|
67 |
15169869
|
Our data demonstrate that GLP-2R desensitization and raft-dependent trafficking represent distinct and independent cellular mechanisms and provide new evidence implicating the importance of a clathrin- and dynamin-independent, lipid raft-dependent pathway for homologous G protein-coupled receptor internalization.
|
68 |
15169869
|
The intestinotrophic and cytoprotective actions of glucagon-like peptide-2 (GLP-2) are mediated by the GLP-2 receptor (GLP-2R), a member of the class II glucagon-secretin G protein-coupled receptor superfamily.
|
69 |
15169869
|
Although GLP-2R endocytosis was dependent on lipid raft integrity, the receptor transiently associated with green fluorescent protein tagged-early endosome antigen 1-positive vesicles and inhibitors of endosomal acidification attenuated the reappearance of the GLP-2R on the cell surface.
|
70 |
15169869
|
Our data demonstrate that GLP-2R desensitization and raft-dependent trafficking represent distinct and independent cellular mechanisms and provide new evidence implicating the importance of a clathrin- and dynamin-independent, lipid raft-dependent pathway for homologous G protein-coupled receptor internalization.
|
71 |
15471943
|
The HeLa cell glucagon-like peptide-2 receptor is coupled to regulation of apoptosis and ERK1/2 activation through divergent signaling pathways.
|
72 |
15471943
|
Glucagon-like peptide-2 (GLP-2) regulates proliferative and cytoprotective pathways in the intestine; however GLP-2 receptor (GLP-2R) signal transduction remains poorly understood, and cell lines that express the endogenous GLP-2R have not yet been isolated.
|
73 |
15471943
|
GLP-2 increased cAMP accumulation and activated ERK1/2 in HeLa cells transiently expressing the cloned human HeLa cell GLP-2R cDNA.
|
74 |
15471943
|
However, the GLP-2R-induced activation of ERK1/2 was not mediated through Galphas, adenylyl cyclase, or transactivation of the epidermal growth factor receptor, but was pertussis toxin sensitive, inhibited by dominant negative Ras, and dependent on betagamma-subunits.
|
75 |
15471943
|
Furthermore, GLP-2 inhibited HeLa cell apoptosis induced by LY294002 in a protein kinase A-dependent, but ERK-independent, manner.
|
76 |
15471943
|
The HeLa cell glucagon-like peptide-2 receptor is coupled to regulation of apoptosis and ERK1/2 activation through divergent signaling pathways.
|
77 |
15471943
|
Glucagon-like peptide-2 (GLP-2) regulates proliferative and cytoprotective pathways in the intestine; however GLP-2 receptor (GLP-2R) signal transduction remains poorly understood, and cell lines that express the endogenous GLP-2R have not yet been isolated.
|
78 |
15471943
|
GLP-2 increased cAMP accumulation and activated ERK1/2 in HeLa cells transiently expressing the cloned human HeLa cell GLP-2R cDNA.
|
79 |
15471943
|
However, the GLP-2R-induced activation of ERK1/2 was not mediated through Galphas, adenylyl cyclase, or transactivation of the epidermal growth factor receptor, but was pertussis toxin sensitive, inhibited by dominant negative Ras, and dependent on betagamma-subunits.
|
80 |
15471943
|
Furthermore, GLP-2 inhibited HeLa cell apoptosis induced by LY294002 in a protein kinase A-dependent, but ERK-independent, manner.
|
81 |
15471943
|
The HeLa cell glucagon-like peptide-2 receptor is coupled to regulation of apoptosis and ERK1/2 activation through divergent signaling pathways.
|
82 |
15471943
|
Glucagon-like peptide-2 (GLP-2) regulates proliferative and cytoprotective pathways in the intestine; however GLP-2 receptor (GLP-2R) signal transduction remains poorly understood, and cell lines that express the endogenous GLP-2R have not yet been isolated.
|
83 |
15471943
|
GLP-2 increased cAMP accumulation and activated ERK1/2 in HeLa cells transiently expressing the cloned human HeLa cell GLP-2R cDNA.
|
84 |
15471943
|
However, the GLP-2R-induced activation of ERK1/2 was not mediated through Galphas, adenylyl cyclase, or transactivation of the epidermal growth factor receptor, but was pertussis toxin sensitive, inhibited by dominant negative Ras, and dependent on betagamma-subunits.
|
85 |
15471943
|
Furthermore, GLP-2 inhibited HeLa cell apoptosis induced by LY294002 in a protein kinase A-dependent, but ERK-independent, manner.
|
86 |
15817468
|
The glucagon-like peptide-2 receptor (GLP-2R) is a member of the Family B glucagon-secretin GPCR family, which exhibit significant sequence and structural differences from the Family A receptors in their intracellular and extracellular domains.
|
87 |
15817468
|
However, progressive truncation of the C terminus reduced cell surface receptor expression, altered agonist-induced GLP-2R trafficking, and abrogated protein kinase A-mediated heterologous receptor desensitization.
|
88 |
15817468
|
Taken together with the previously demonstrated clathrin and dynamin-independent, lipid-raft-dependent pathways for internalization, our data suggest that GLP-2 receptor signaling has evolved unique structural and functional mechanisms for control of receptor trafficking, desensitization, and resensitization.
|
89 |
15817468
|
The glucagon-like peptide-2 receptor (GLP-2R) is a member of the Family B glucagon-secretin GPCR family, which exhibit significant sequence and structural differences from the Family A receptors in their intracellular and extracellular domains.
|
90 |
15817468
|
However, progressive truncation of the C terminus reduced cell surface receptor expression, altered agonist-induced GLP-2R trafficking, and abrogated protein kinase A-mediated heterologous receptor desensitization.
|
91 |
15817468
|
Taken together with the previously demonstrated clathrin and dynamin-independent, lipid-raft-dependent pathways for internalization, our data suggest that GLP-2 receptor signaling has evolved unique structural and functional mechanisms for control of receptor trafficking, desensitization, and resensitization.
|