# |
PMID |
Sentence |
1 |
8514757
|
The cyclophilin component of the unactivated estrogen receptor contains a tetratricopeptide repeat domain and shares identity with p59 (FKBP59).
|
2 |
8514757
|
Results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analyses for protein extracts recovered from affinity chromatography of receptor cytosols, either preincubated or untreated with estradiol, suggest a component structure for the intact oligomeric receptor which includes hsp90, hsp70, p59, a 40-kDa cyclophilin-related protein, and an uncharacterized 22-kDa protein species.
|
3 |
8514757
|
The cyclophilin component of the unactivated estrogen receptor contains a tetratricopeptide repeat domain and shares identity with p59 (FKBP59).
|
4 |
8514757
|
Results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analyses for protein extracts recovered from affinity chromatography of receptor cytosols, either preincubated or untreated with estradiol, suggest a component structure for the intact oligomeric receptor which includes hsp90, hsp70, p59, a 40-kDa cyclophilin-related protein, and an uncharacterized 22-kDa protein species.
|
5 |
11160694
|
Soluble mediators such as interleukin-1beta, tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) produced from activated macrophages play an important role in the destruction of pancreatic beta cells in mice infected with a low dose of the D variant of encephalomyocarditis (EMC-D) virus.
|
6 |
11160694
|
We examined the activation of p59/p56(Hck), p55(Fgr), and p56/p53(Lyn) in macrophages from DBA/2 mice infected with the virus.
|
7 |
11160694
|
We found that p59/p56(Hck) showed a marked increase in both autophosphorylation and kinase activity at 48 h after infection, whereas p55(Fgr) and p56/p53(Lyn) did not.
|
8 |
11160694
|
The p59/p56(Hck) activity was closely correlated with the tyrosine phosphorylation level of Vav.
|
9 |
11160694
|
Treatment of EMC-D virus-infected mice with the Src kinase inhibitor, PP2, resulted in the inhibition of p59/p56(Hck) activity and almost complete inhibition of the production of TNF-alpha and iNOS in macrophages and the subsequent prevention of diabetes in mice.
|
10 |
11160694
|
On the basis of these observations, we conclude that the Src kinase, p59/p56(Hck), plays an important role in the activation of macrophages and the subsequent production of TNF-alpha and nitric oxide, leading to the destruction of pancreatic beta cells, which results in the development of diabetes in mice infected with a low dose of EMC-D virus.
|
11 |
11160694
|
Soluble mediators such as interleukin-1beta, tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) produced from activated macrophages play an important role in the destruction of pancreatic beta cells in mice infected with a low dose of the D variant of encephalomyocarditis (EMC-D) virus.
|
12 |
11160694
|
We examined the activation of p59/p56(Hck), p55(Fgr), and p56/p53(Lyn) in macrophages from DBA/2 mice infected with the virus.
|
13 |
11160694
|
We found that p59/p56(Hck) showed a marked increase in both autophosphorylation and kinase activity at 48 h after infection, whereas p55(Fgr) and p56/p53(Lyn) did not.
|
14 |
11160694
|
The p59/p56(Hck) activity was closely correlated with the tyrosine phosphorylation level of Vav.
|
15 |
11160694
|
Treatment of EMC-D virus-infected mice with the Src kinase inhibitor, PP2, resulted in the inhibition of p59/p56(Hck) activity and almost complete inhibition of the production of TNF-alpha and iNOS in macrophages and the subsequent prevention of diabetes in mice.
|
16 |
11160694
|
On the basis of these observations, we conclude that the Src kinase, p59/p56(Hck), plays an important role in the activation of macrophages and the subsequent production of TNF-alpha and nitric oxide, leading to the destruction of pancreatic beta cells, which results in the development of diabetes in mice infected with a low dose of EMC-D virus.
|
17 |
11160694
|
Soluble mediators such as interleukin-1beta, tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) produced from activated macrophages play an important role in the destruction of pancreatic beta cells in mice infected with a low dose of the D variant of encephalomyocarditis (EMC-D) virus.
|
18 |
11160694
|
We examined the activation of p59/p56(Hck), p55(Fgr), and p56/p53(Lyn) in macrophages from DBA/2 mice infected with the virus.
|
19 |
11160694
|
We found that p59/p56(Hck) showed a marked increase in both autophosphorylation and kinase activity at 48 h after infection, whereas p55(Fgr) and p56/p53(Lyn) did not.
|
20 |
11160694
|
The p59/p56(Hck) activity was closely correlated with the tyrosine phosphorylation level of Vav.
|
21 |
11160694
|
Treatment of EMC-D virus-infected mice with the Src kinase inhibitor, PP2, resulted in the inhibition of p59/p56(Hck) activity and almost complete inhibition of the production of TNF-alpha and iNOS in macrophages and the subsequent prevention of diabetes in mice.
|
22 |
11160694
|
On the basis of these observations, we conclude that the Src kinase, p59/p56(Hck), plays an important role in the activation of macrophages and the subsequent production of TNF-alpha and nitric oxide, leading to the destruction of pancreatic beta cells, which results in the development of diabetes in mice infected with a low dose of EMC-D virus.
|
23 |
11160694
|
Soluble mediators such as interleukin-1beta, tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) produced from activated macrophages play an important role in the destruction of pancreatic beta cells in mice infected with a low dose of the D variant of encephalomyocarditis (EMC-D) virus.
|
24 |
11160694
|
We examined the activation of p59/p56(Hck), p55(Fgr), and p56/p53(Lyn) in macrophages from DBA/2 mice infected with the virus.
|
25 |
11160694
|
We found that p59/p56(Hck) showed a marked increase in both autophosphorylation and kinase activity at 48 h after infection, whereas p55(Fgr) and p56/p53(Lyn) did not.
|
26 |
11160694
|
The p59/p56(Hck) activity was closely correlated with the tyrosine phosphorylation level of Vav.
|
27 |
11160694
|
Treatment of EMC-D virus-infected mice with the Src kinase inhibitor, PP2, resulted in the inhibition of p59/p56(Hck) activity and almost complete inhibition of the production of TNF-alpha and iNOS in macrophages and the subsequent prevention of diabetes in mice.
|
28 |
11160694
|
On the basis of these observations, we conclude that the Src kinase, p59/p56(Hck), plays an important role in the activation of macrophages and the subsequent production of TNF-alpha and nitric oxide, leading to the destruction of pancreatic beta cells, which results in the development of diabetes in mice infected with a low dose of EMC-D virus.
|
29 |
11160694
|
Soluble mediators such as interleukin-1beta, tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) produced from activated macrophages play an important role in the destruction of pancreatic beta cells in mice infected with a low dose of the D variant of encephalomyocarditis (EMC-D) virus.
|
30 |
11160694
|
We examined the activation of p59/p56(Hck), p55(Fgr), and p56/p53(Lyn) in macrophages from DBA/2 mice infected with the virus.
|
31 |
11160694
|
We found that p59/p56(Hck) showed a marked increase in both autophosphorylation and kinase activity at 48 h after infection, whereas p55(Fgr) and p56/p53(Lyn) did not.
|
32 |
11160694
|
The p59/p56(Hck) activity was closely correlated with the tyrosine phosphorylation level of Vav.
|
33 |
11160694
|
Treatment of EMC-D virus-infected mice with the Src kinase inhibitor, PP2, resulted in the inhibition of p59/p56(Hck) activity and almost complete inhibition of the production of TNF-alpha and iNOS in macrophages and the subsequent prevention of diabetes in mice.
|
34 |
11160694
|
On the basis of these observations, we conclude that the Src kinase, p59/p56(Hck), plays an important role in the activation of macrophages and the subsequent production of TNF-alpha and nitric oxide, leading to the destruction of pancreatic beta cells, which results in the development of diabetes in mice infected with a low dose of EMC-D virus.
|