# |
PMID |
Sentence |
1 |
18567820
|
Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes.
|
2 |
18952825
|
JAZF1 is a transcriptional repressor of NR2C2, which results in low IGF1 serum concentrations, perinatal and early postnatal hypoglycemia and growth retardation when knocked out in mice.
|
3 |
19247373
|
A recent meta-analysis on three genome-wide association (GWA) scans identified six loci (NOTCH2, THADA, ADAMTS9, JAZF1, CDC123/CAMKID and TSPAN8/LGRS) highly associated with type II diabetes (T2D) in Caucasians.
|
4 |
19247373
|
In a multiple linear-regression analysis, the same variant in the CDC123/CAMKID revealed a marked decrease in fasting insulin levels among 'G' (risk) allele carriers independently in NG controls (P=0.030) and in T2D cases (P=0.009), as well as in the combined sample (P=0.003) after adjusting for covariates.
|
5 |
19670153
|
Lack of significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits.
|
6 |
19670153
|
We performed an association study of 9 SNPs in or around JAZF1, CDC123/ CAMK1D, NOTCH2, BCL11A, ADAMTS9, VEGFA, DCD, THADA, and TSPAN8/ LGR5 with T2D and related quantitative traits (fasting insulin and glucose, indices derived from OGTT) in the isolated population of Sorbs (205 cases and 695 controls) and in a mixed German population (Leipzig) (938 subjects with and 918 without T2D).
|
7 |
19670153
|
Lack of significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits.
|
8 |
19670153
|
We performed an association study of 9 SNPs in or around JAZF1, CDC123/ CAMK1D, NOTCH2, BCL11A, ADAMTS9, VEGFA, DCD, THADA, and TSPAN8/ LGR5 with T2D and related quantitative traits (fasting insulin and glucose, indices derived from OGTT) in the isolated population of Sorbs (205 cases and 695 controls) and in a mixed German population (Leipzig) (938 subjects with and 918 without T2D).
|
9 |
19998368
|
HNF1B and JAZF1 genes, diabetes, and prostate cancer risk.
|
10 |
20580384
|
To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance.
|
11 |
20580384
|
In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA).
|
12 |
20580384
|
The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size.
|
13 |
20580384
|
These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression.
|
14 |
20580384
|
To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance.
|
15 |
20580384
|
In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA).
|
16 |
20580384
|
The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size.
|
17 |
20580384
|
These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression.
|
18 |
20580384
|
To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance.
|
19 |
20580384
|
In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA).
|
20 |
20580384
|
The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size.
|
21 |
20580384
|
These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression.
|
22 |
20580384
|
To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance.
|
23 |
20580384
|
In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA).
|
24 |
20580384
|
The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size.
|
25 |
20580384
|
These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression.
|
26 |
20927120
|
Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese.
|
27 |
20927120
|
Several genetic loci (JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, ADAMTS9, VEGFA and HHEX-IDE) were identified to be significantly related to the risk of type 2 diabetes and quantitative metabolic traits in European populations.
|
28 |
20927120
|
In a meta-analysis where we pooled our data with the three previous studies conducted in East Asians, we found that the variants of JAZF1 rs864745 (1.09 (1.03-1.16); P=3.49 × 10(-3)) and TSPAN8/LGR5 rs7961581 (1.11(1.05-1.17); P=1.89 × 10(-4)) were significantly associated with type 2 diabetes risk.
|
29 |
20927120
|
This large population-based study and meta-analysis further confirmed the modest effects of the JAZF1, TSPAN8/LGR5 and HHEX-IDE loci on type 2 diabetes in Chinese and other East Asians.
|
30 |
20927120
|
Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese.
|
31 |
20927120
|
Several genetic loci (JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, ADAMTS9, VEGFA and HHEX-IDE) were identified to be significantly related to the risk of type 2 diabetes and quantitative metabolic traits in European populations.
|
32 |
20927120
|
In a meta-analysis where we pooled our data with the three previous studies conducted in East Asians, we found that the variants of JAZF1 rs864745 (1.09 (1.03-1.16); P=3.49 × 10(-3)) and TSPAN8/LGR5 rs7961581 (1.11(1.05-1.17); P=1.89 × 10(-4)) were significantly associated with type 2 diabetes risk.
|
33 |
20927120
|
This large population-based study and meta-analysis further confirmed the modest effects of the JAZF1, TSPAN8/LGR5 and HHEX-IDE loci on type 2 diabetes in Chinese and other East Asians.
|
34 |
20927120
|
Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese.
|
35 |
20927120
|
Several genetic loci (JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, ADAMTS9, VEGFA and HHEX-IDE) were identified to be significantly related to the risk of type 2 diabetes and quantitative metabolic traits in European populations.
|
36 |
20927120
|
In a meta-analysis where we pooled our data with the three previous studies conducted in East Asians, we found that the variants of JAZF1 rs864745 (1.09 (1.03-1.16); P=3.49 × 10(-3)) and TSPAN8/LGR5 rs7961581 (1.11(1.05-1.17); P=1.89 × 10(-4)) were significantly associated with type 2 diabetes risk.
|
37 |
20927120
|
This large population-based study and meta-analysis further confirmed the modest effects of the JAZF1, TSPAN8/LGR5 and HHEX-IDE loci on type 2 diabetes in Chinese and other East Asians.
|
38 |
20927120
|
Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese.
|
39 |
20927120
|
Several genetic loci (JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, ADAMTS9, VEGFA and HHEX-IDE) were identified to be significantly related to the risk of type 2 diabetes and quantitative metabolic traits in European populations.
|
40 |
20927120
|
In a meta-analysis where we pooled our data with the three previous studies conducted in East Asians, we found that the variants of JAZF1 rs864745 (1.09 (1.03-1.16); P=3.49 × 10(-3)) and TSPAN8/LGR5 rs7961581 (1.11(1.05-1.17); P=1.89 × 10(-4)) were significantly associated with type 2 diabetes risk.
|
41 |
20927120
|
This large population-based study and meta-analysis further confirmed the modest effects of the JAZF1, TSPAN8/LGR5 and HHEX-IDE loci on type 2 diabetes in Chinese and other East Asians.
|
42 |
22307069
|
Nominally significant genotype-by-intervention interactions were detected for 1-year change in waist circumference with JAZF1, MTNR1B, and IRS1, and BMI with JAZF1.
|
43 |
22923468
|
Twenty-four single nucleotide polymorphisms (SNPs) in or near genes (KCNJ11, PPARG, TCF7L2, SLC30A8, HHEX, CDKN2A/2B, CDKAL1, IGF2BP2, ARHGEF11, JAZF1, CDC123/CAMK1D, FTO, TSPAN8/LGR5, KCNQ1, THADA, ADAMTS9, NOTCH2, NXPH1, RORA, UBQLNL, and RALGPS2) were genotyped in Mexican Mestizos.
|
44 |
22923468
|
Association to type 2 diabetes was found for rs13266634 (SLC30A8), rs7923837 (HHEX), rs10811661 (CDKN2A/2B), rs4402960 (IGF2BP2), rs12779790 (CDC123/CAMK1D), and rs2237892 (KCNQ1).
|
45 |
22923468
|
In addition, rs7754840 (CDKAL1) was associated in the nonobese type 2 diabetic subgroup, and for rs7903146 (TCF7L2), association was observed for early-onset type 2 diabetes.
|
46 |
23193118
|
Ten T2D markers near 9 loci (NOTCH2, ADCY5, JAZF1, CDKN2A/B, TCF7L2, KCNQ1, MTNR1B, FTO, and HNF1B) were nominally associated with PCa (P < 0.05); the association for single nucleotide polymorphism rs757210 at the HNF1B locus was significant when multiple comparisons were accounted for (adjusted P = 0.001).
|
47 |
23193183
|
Our results revealed that seven index SNPs at the TCF7L2, KLF14, KCNQ1, ADCY5, CDKAL1, JAZF1, and GCKR loci were significantly associated with T2D (P < 0.05).
|
48 |
23193183
|
Locus-wide analysis demonstrated significant associations (P(emp) < 0.05) at regional best SNPs in the TCF7L2, KLF14, and HMGA2 loci as well as suggestive signals in KCNQ1 after correction for the effective number of SNPs at each locus.
|