Ignet
Search (e.g., vaccine, IFNG): Help
About
Home
Introduction
Statistics
Programs
Dignet
Gene
GenePair
BioSummarAI
Help & Docs
Documents
Help
FAQs
Links
Acknowledge
Disclaimer
Contact Us
UM Logo

UMMS Logo

UMMS Logo

Gene Information

Gene symbol: JAZF1

Gene name: JAZF zinc finger 1

HGNC ID: 28917

Synonyms: TIP27, DKFZp761K2222, ZNF802

Related Genes

# Gene Symbol Number of hits
1 ADAMTS9 1 hits
2 ADCY5 1 hits
3 ADIPOQ 1 hits
4 ARHGEF11 1 hits
5 BCL11A 1 hits
6 CAMK1D 1 hits
7 CDC123 1 hits
8 CDKAL1 1 hits
9 CDKN2A 1 hits
10 CNBP 1 hits
11 DCD 1 hits
12 FTO 1 hits
13 GCKR 1 hits
14 HHEX 1 hits
15 HNF1B 1 hits
16 IGF1 1 hits
17 IGF2BP2 1 hits
18 INS 1 hits
19 IRS1 1 hits
20 KCNJ11 1 hits
21 KCNQ1 1 hits
22 KLF14 1 hits
23 LGR5 1 hits
24 LIPE 1 hits
25 MTNR1B 1 hits
26 NOTCH2 1 hits
27 PPARG 1 hits
28 RALGPS2 1 hits
29 SLC30A8 1 hits
30 SREBF1 1 hits
31 TCF7L2 1 hits
32 THADA 1 hits
33 TSPAN8 1 hits
34 UBQLNL 1 hits
35 VEGFA 1 hits

Related Sentences

# PMID Sentence
1 18567820 Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes.
2 18952825 JAZF1 is a transcriptional repressor of NR2C2, which results in low IGF1 serum concentrations, perinatal and early postnatal hypoglycemia and growth retardation when knocked out in mice.
3 19247373 A recent meta-analysis on three genome-wide association (GWA) scans identified six loci (NOTCH2, THADA, ADAMTS9, JAZF1, CDC123/CAMKID and TSPAN8/LGRS) highly associated with type II diabetes (T2D) in Caucasians.
4 19247373 In a multiple linear-regression analysis, the same variant in the CDC123/CAMKID revealed a marked decrease in fasting insulin levels among 'G' (risk) allele carriers independently in NG controls (P=0.030) and in T2D cases (P=0.009), as well as in the combined sample (P=0.003) after adjusting for covariates.
5 19670153 Lack of significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits.
6 19670153 We performed an association study of 9 SNPs in or around JAZF1, CDC123/ CAMK1D, NOTCH2, BCL11A, ADAMTS9, VEGFA, DCD, THADA, and TSPAN8/ LGR5 with T2D and related quantitative traits (fasting insulin and glucose, indices derived from OGTT) in the isolated population of Sorbs (205 cases and 695 controls) and in a mixed German population (Leipzig) (938 subjects with and 918 without T2D).
7 19670153 Lack of significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits.
8 19670153 We performed an association study of 9 SNPs in or around JAZF1, CDC123/ CAMK1D, NOTCH2, BCL11A, ADAMTS9, VEGFA, DCD, THADA, and TSPAN8/ LGR5 with T2D and related quantitative traits (fasting insulin and glucose, indices derived from OGTT) in the isolated population of Sorbs (205 cases and 695 controls) and in a mixed German population (Leipzig) (938 subjects with and 918 without T2D).
9 19998368 HNF1B and JAZF1 genes, diabetes, and prostate cancer risk.
10 20580384 To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance.
11 20580384 In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA).
12 20580384 The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size.
13 20580384 These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression.
14 20580384 To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance.
15 20580384 In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA).
16 20580384 The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size.
17 20580384 These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression.
18 20580384 To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance.
19 20580384 In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA).
20 20580384 The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size.
21 20580384 These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression.
22 20580384 To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance.
23 20580384 In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA).
24 20580384 The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size.
25 20580384 These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression.
26 20927120 Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese.
27 20927120 Several genetic loci (JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, ADAMTS9, VEGFA and HHEX-IDE) were identified to be significantly related to the risk of type 2 diabetes and quantitative metabolic traits in European populations.
28 20927120 In a meta-analysis where we pooled our data with the three previous studies conducted in East Asians, we found that the variants of JAZF1 rs864745 (1.09 (1.03-1.16); P=3.49 × 10(-3)) and TSPAN8/LGR5 rs7961581 (1.11(1.05-1.17); P=1.89 × 10(-4)) were significantly associated with type 2 diabetes risk.
29 20927120 This large population-based study and meta-analysis further confirmed the modest effects of the JAZF1, TSPAN8/LGR5 and HHEX-IDE loci on type 2 diabetes in Chinese and other East Asians.
30 20927120 Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese.
31 20927120 Several genetic loci (JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, ADAMTS9, VEGFA and HHEX-IDE) were identified to be significantly related to the risk of type 2 diabetes and quantitative metabolic traits in European populations.
32 20927120 In a meta-analysis where we pooled our data with the three previous studies conducted in East Asians, we found that the variants of JAZF1 rs864745 (1.09 (1.03-1.16); P=3.49 × 10(-3)) and TSPAN8/LGR5 rs7961581 (1.11(1.05-1.17); P=1.89 × 10(-4)) were significantly associated with type 2 diabetes risk.
33 20927120 This large population-based study and meta-analysis further confirmed the modest effects of the JAZF1, TSPAN8/LGR5 and HHEX-IDE loci on type 2 diabetes in Chinese and other East Asians.
34 20927120 Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese.
35 20927120 Several genetic loci (JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, ADAMTS9, VEGFA and HHEX-IDE) were identified to be significantly related to the risk of type 2 diabetes and quantitative metabolic traits in European populations.
36 20927120 In a meta-analysis where we pooled our data with the three previous studies conducted in East Asians, we found that the variants of JAZF1 rs864745 (1.09 (1.03-1.16); P=3.49 × 10(-3)) and TSPAN8/LGR5 rs7961581 (1.11(1.05-1.17); P=1.89 × 10(-4)) were significantly associated with type 2 diabetes risk.
37 20927120 This large population-based study and meta-analysis further confirmed the modest effects of the JAZF1, TSPAN8/LGR5 and HHEX-IDE loci on type 2 diabetes in Chinese and other East Asians.
38 20927120 Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese.
39 20927120 Several genetic loci (JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, ADAMTS9, VEGFA and HHEX-IDE) were identified to be significantly related to the risk of type 2 diabetes and quantitative metabolic traits in European populations.
40 20927120 In a meta-analysis where we pooled our data with the three previous studies conducted in East Asians, we found that the variants of JAZF1 rs864745 (1.09 (1.03-1.16); P=3.49 × 10(-3)) and TSPAN8/LGR5 rs7961581 (1.11(1.05-1.17); P=1.89 × 10(-4)) were significantly associated with type 2 diabetes risk.
41 20927120 This large population-based study and meta-analysis further confirmed the modest effects of the JAZF1, TSPAN8/LGR5 and HHEX-IDE loci on type 2 diabetes in Chinese and other East Asians.
42 22307069 Nominally significant genotype-by-intervention interactions were detected for 1-year change in waist circumference with JAZF1, MTNR1B, and IRS1, and BMI with JAZF1.
43 22923468 Twenty-four single nucleotide polymorphisms (SNPs) in or near genes (KCNJ11, PPARG, TCF7L2, SLC30A8, HHEX, CDKN2A/2B, CDKAL1, IGF2BP2, ARHGEF11, JAZF1, CDC123/CAMK1D, FTO, TSPAN8/LGR5, KCNQ1, THADA, ADAMTS9, NOTCH2, NXPH1, RORA, UBQLNL, and RALGPS2) were genotyped in Mexican Mestizos.
44 22923468 Association to type 2 diabetes was found for rs13266634 (SLC30A8), rs7923837 (HHEX), rs10811661 (CDKN2A/2B), rs4402960 (IGF2BP2), rs12779790 (CDC123/CAMK1D), and rs2237892 (KCNQ1).
45 22923468 In addition, rs7754840 (CDKAL1) was associated in the nonobese type 2 diabetic subgroup, and for rs7903146 (TCF7L2), association was observed for early-onset type 2 diabetes.
46 23193118 Ten T2D markers near 9 loci (NOTCH2, ADCY5, JAZF1, CDKN2A/B, TCF7L2, KCNQ1, MTNR1B, FTO, and HNF1B) were nominally associated with PCa (P < 0.05); the association for single nucleotide polymorphism rs757210 at the HNF1B locus was significant when multiple comparisons were accounted for (adjusted P = 0.001).
47 23193183 Our results revealed that seven index SNPs at the TCF7L2, KLF14, KCNQ1, ADCY5, CDKAL1, JAZF1, and GCKR loci were significantly associated with T2D (P < 0.05).
48 23193183 Locus-wide analysis demonstrated significant associations (P(emp) < 0.05) at regional best SNPs in the TCF7L2, KLF14, and HMGA2 loci as well as suggestive signals in KCNQ1 after correction for the effective number of SNPs at each locus.