# |
PMID |
Sentence |
1 |
18003914
|
Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases.
|
2 |
18003914
|
Here we show the JmjC domain-containing protein UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome), as well as the related JMJD3 (jumonji domain containing 3), specifically removes methyl marks on H3K27 in vitro.
|
3 |
18003914
|
Finally, overexpression of UTX and JMJD3 leads to reduced di- and trimethylation on H3K27 in cells, suggesting that UTX and JMJD3 may function as H3K27 demethylases in vivo.
|
4 |
18003914
|
The identification of UTX and JMJD3 as H3K27-specific demethylases provides direct evidence to indicate that similar to methylation on K4, K9, and K36 of histone H3, methylation on H3K27 is also reversible and can be dynamically regulated by site-specific histone methyltransferases and demethylases.
|
5 |
18003914
|
Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases.
|
6 |
18003914
|
Here we show the JmjC domain-containing protein UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome), as well as the related JMJD3 (jumonji domain containing 3), specifically removes methyl marks on H3K27 in vitro.
|
7 |
18003914
|
Finally, overexpression of UTX and JMJD3 leads to reduced di- and trimethylation on H3K27 in cells, suggesting that UTX and JMJD3 may function as H3K27 demethylases in vivo.
|
8 |
18003914
|
The identification of UTX and JMJD3 as H3K27-specific demethylases provides direct evidence to indicate that similar to methylation on K4, K9, and K36 of histone H3, methylation on H3K27 is also reversible and can be dynamically regulated by site-specific histone methyltransferases and demethylases.
|
9 |
18003914
|
Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases.
|
10 |
18003914
|
Here we show the JmjC domain-containing protein UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome), as well as the related JMJD3 (jumonji domain containing 3), specifically removes methyl marks on H3K27 in vitro.
|
11 |
18003914
|
Finally, overexpression of UTX and JMJD3 leads to reduced di- and trimethylation on H3K27 in cells, suggesting that UTX and JMJD3 may function as H3K27 demethylases in vivo.
|
12 |
18003914
|
The identification of UTX and JMJD3 as H3K27-specific demethylases provides direct evidence to indicate that similar to methylation on K4, K9, and K36 of histone H3, methylation on H3K27 is also reversible and can be dynamically regulated by site-specific histone methyltransferases and demethylases.
|
13 |
18003914
|
Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases.
|
14 |
18003914
|
Here we show the JmjC domain-containing protein UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome), as well as the related JMJD3 (jumonji domain containing 3), specifically removes methyl marks on H3K27 in vitro.
|
15 |
18003914
|
Finally, overexpression of UTX and JMJD3 leads to reduced di- and trimethylation on H3K27 in cells, suggesting that UTX and JMJD3 may function as H3K27 demethylases in vivo.
|
16 |
18003914
|
The identification of UTX and JMJD3 as H3K27-specific demethylases provides direct evidence to indicate that similar to methylation on K4, K9, and K36 of histone H3, methylation on H3K27 is also reversible and can be dynamically regulated by site-specific histone methyltransferases and demethylases.
|