# |
PMID |
Sentence |
1 |
9632352
|
Compound 3 showed weak antagonistic activity at the rat P2X3 receptor (IC50 58.3 +/- 0.1 microM), while at recombinant rat P2X2 and P2X4 receptors no enhancing or antagonistic properties were evident.
|
2 |
9632352
|
Compounds 2 and 3 were found to be inactive as either agonists or antagonists at the phospholipase C-coupled P2Y1 receptor of turkey erythrocytes, at recombinant human P2Y2 and P2Y4 receptors, and at recombinant rat P2Y6 receptors.
|
3 |
10869714
|
Nicardipine, a representative dihydropyridine, used otherwise as an L-type calcium channel blocker, was shown to be an antagonist at recombinant rat P2X(2) (IC(50)=25 microM) and P2X(4) (IC(50) approximately 220 microM) receptors expressed in Xenopus oocytes.
|
4 |
10869714
|
Thus, while a conventional dihydropyridine, nicardipine, was found to antagonize rat P2X(2) receptors ninefold more potently than P2X(4) receptors, the effects of novel, anionic 5-phosphonate analogues at the receptor were more complex.
|
5 |
10869714
|
Nicardipine, a representative dihydropyridine, used otherwise as an L-type calcium channel blocker, was shown to be an antagonist at recombinant rat P2X(2) (IC(50)=25 microM) and P2X(4) (IC(50) approximately 220 microM) receptors expressed in Xenopus oocytes.
|
6 |
10869714
|
Thus, while a conventional dihydropyridine, nicardipine, was found to antagonize rat P2X(2) receptors ninefold more potently than P2X(4) receptors, the effects of novel, anionic 5-phosphonate analogues at the receptor were more complex.
|
7 |
11462975
|
Novel analogues of the P2 receptor antagonist pyridoxal-5'-phosphate 6-azophenyl-2',5'-disulfonate (2) were synthesized and studied as antagonists in functional assays at recombinant rat P2X1, P2X2, and P2X3 receptors expressed in Xenopus oocytes (ion flux stimulation) and at turkey erythrocyte P2Y1 receptors (phospholipase C activation).
|
8 |
11462975
|
The p-carboxyphenylazo analogue, 4, of phosphate 2 displayed an IC50 value of 9 nM at recombinant P2X1 receptors and was 1300-, 16-, and > 10,000-fold selective for P2X1 versus P2X2, P2X3, and P2Y1 subtypes, respectively.
|
9 |
11462975
|
The 5-methylphosphonate analogue containing a 6-[3,5-bis(methylphosphonate)]phenylazo moiety, 9, had IC50 values of 11 and 25 nM at recombinant P2X1 and P2X3 receptors, respectively.
|
10 |
11462975
|
The analogue containing a phenylazo 4-phosphonate group, 11, was also very potent at both P2X1 and P2X3 receptors.
|
11 |
11462975
|
None of the analogues were more potent at P2X7 and P2Y1 receptors than 2, which acted in the micromolar range at these two subtypes.
|
12 |
12850289
|
The expression of the nucleotide receptors P2X1, P2X2, P2X7, P2Y1, P2Y2 and P2Y4, in the pancreas of the streptozotocin-induced diabetic rat was investigated using immunohistochemistry.
|
13 |
12850289
|
Double-labelling experiments, using antibodies raised against insulin, somatostatin and glucagon, showed, for the first time, an increase in immunostaining for P2X7 receptors on islet glucagon-containing alpha cells (which had migrated to the interior), while no P2X7 receptors were found in beta and delta cells.
|
14 |
12850289
|
P2Y1 receptors were present in intra-islet capillaries, while P2Y4 receptors were found on both alpha and beta cells.
|
15 |
12850289
|
P2Y1 and P2Y2 receptor expression was also found in pancreatic duct cells and P2X1, P2X2, P2Y1 and P2Y2 receptors were identified in small blood vessels.
|
16 |
12850289
|
The expression of the nucleotide receptors P2X1, P2X2, P2X7, P2Y1, P2Y2 and P2Y4, in the pancreas of the streptozotocin-induced diabetic rat was investigated using immunohistochemistry.
|
17 |
12850289
|
Double-labelling experiments, using antibodies raised against insulin, somatostatin and glucagon, showed, for the first time, an increase in immunostaining for P2X7 receptors on islet glucagon-containing alpha cells (which had migrated to the interior), while no P2X7 receptors were found in beta and delta cells.
|
18 |
12850289
|
P2Y1 receptors were present in intra-islet capillaries, while P2Y4 receptors were found on both alpha and beta cells.
|
19 |
12850289
|
P2Y1 and P2Y2 receptor expression was also found in pancreatic duct cells and P2X1, P2X2, P2Y1 and P2Y2 receptors were identified in small blood vessels.
|
20 |
22922976
|
The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y(1) receptors, in guinea-pig vas deferens and bladder P2X(1) receptors, and in ion flux experiments by using recombinant rat P2X(2) receptors expressed in Xenopus oocytes.
|
21 |
22922976
|
The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y(1) receptors, whereas at recombinant P2X(2) receptors had an IC(50) value of 1.1 μM.
|
22 |
22922976
|
An ethyl phosphonate derivative (C(15)H(15)O(11)N(3)PS(2)Na(3)), whereas inactive at turkey erythrocyte P2Y(1) receptors, was particularly potent at recombinant P2X(2) receptors.
|
23 |
22922976
|
The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y(1) receptors, in guinea-pig vas deferens and bladder P2X(1) receptors, and in ion flux experiments by using recombinant rat P2X(2) receptors expressed in Xenopus oocytes.
|
24 |
22922976
|
The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y(1) receptors, whereas at recombinant P2X(2) receptors had an IC(50) value of 1.1 μM.
|
25 |
22922976
|
An ethyl phosphonate derivative (C(15)H(15)O(11)N(3)PS(2)Na(3)), whereas inactive at turkey erythrocyte P2Y(1) receptors, was particularly potent at recombinant P2X(2) receptors.
|
26 |
22922976
|
The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y(1) receptors, in guinea-pig vas deferens and bladder P2X(1) receptors, and in ion flux experiments by using recombinant rat P2X(2) receptors expressed in Xenopus oocytes.
|
27 |
22922976
|
The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y(1) receptors, whereas at recombinant P2X(2) receptors had an IC(50) value of 1.1 μM.
|
28 |
22922976
|
An ethyl phosphonate derivative (C(15)H(15)O(11)N(3)PS(2)Na(3)), whereas inactive at turkey erythrocyte P2Y(1) receptors, was particularly potent at recombinant P2X(2) receptors.
|
29 |
23434541
|
Extracellular ATP can cause P2X receptors to activate the NOD-like receptor 3 (NLRP3) inflammasome and cause IL-1β and IL-18 maturation and release.
|
30 |
23434541
|
Linear correlation analysis shows that P2X4 expression was positively related with urine IL-1β and IL-18 levels.
|
31 |
23434541
|
Moreover, P2X4 expression was co-localized with NLRP3, IL-1β, and IL-18 expression.
|
32 |
23434541
|
In vitro culture experiments showed NLRP3 protein expression, cleavage of caspase-1 and IL-1β, and release of IL-1β, IL-18 and ATP in HK-2 cells significantly increased after high glucose stimulation.
|
33 |
23434541
|
The P2 receptor antagonist suramin, P2X receptor antagonist TNP-ATP, P2X4 selective antagonist 5-BDBD, and P2X4 gene silencing attenuated NLRP3 expression, cleavage of caspase-1 and IL-1β, and release of IL-1β and IL-18 induced by high glucose.
|
34 |
23434541
|
Taken together, these results suggest that ATP-P2X4 signaling mediates high glucose-induced activation of the NLRP3 inflammasome, regulates IL-1 family cytokine secretion, and causes the development of tubulointerstitial inflammation in DN.
|