# |
PMID |
Sentence |
1 |
9632352
|
Compound 3 showed weak antagonistic activity at the rat P2X3 receptor (IC50 58.3 +/- 0.1 microM), while at recombinant rat P2X2 and P2X4 receptors no enhancing or antagonistic properties were evident.
|
2 |
9632352
|
Compounds 2 and 3 were found to be inactive as either agonists or antagonists at the phospholipase C-coupled P2Y1 receptor of turkey erythrocytes, at recombinant human P2Y2 and P2Y4 receptors, and at recombinant rat P2Y6 receptors.
|
3 |
11754592
|
Methanocarba modification of uracil and adenine nucleotides: high potency of Northern ring conformation at P2Y1, P2Y2, P2Y4, and P2Y11 but not P2Y6 receptors.
|
4 |
11754592
|
The ability of the analogues to stimulate phospholipase C through activation of turkey P2Y1 or human P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors stably expressed in astrocytoma cells was measured.
|
5 |
11754592
|
At recombinant human P2Y1 and P2Y2 receptors, (N)-methanocarba-ATP was 138- and 41-fold, respectively, more potent than racemic (S)-methanocarba-ATP as an agonist.
|
6 |
11754592
|
(N)-Methanocarba-uridine 5'-triphosphate (UTP) was equipotent to UTP as an agonist at human P2Y2 receptors and also activated P2Y4 receptors with an EC(50) of 85 nM.
|
7 |
11754592
|
The triphosphate was more potent than UTP in inducing a dilatory P2Y4 response (pEC(50) = 6.1 +/- 0.2), while the diphosphate was inactive as either an agonist or antagonist in a P2Y6 receptor-mediated contractile response.
|
8 |
11754592
|
Our results suggest that new nucleotide agonists may be designed on the basis of the (N) conformation that favors selectivity for P2Y1, P2Y2, P2Y4, and P2Y11 receptors.
|
9 |
11754592
|
Methanocarba modification of uracil and adenine nucleotides: high potency of Northern ring conformation at P2Y1, P2Y2, P2Y4, and P2Y11 but not P2Y6 receptors.
|
10 |
11754592
|
The ability of the analogues to stimulate phospholipase C through activation of turkey P2Y1 or human P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors stably expressed in astrocytoma cells was measured.
|
11 |
11754592
|
At recombinant human P2Y1 and P2Y2 receptors, (N)-methanocarba-ATP was 138- and 41-fold, respectively, more potent than racemic (S)-methanocarba-ATP as an agonist.
|
12 |
11754592
|
(N)-Methanocarba-uridine 5'-triphosphate (UTP) was equipotent to UTP as an agonist at human P2Y2 receptors and also activated P2Y4 receptors with an EC(50) of 85 nM.
|
13 |
11754592
|
The triphosphate was more potent than UTP in inducing a dilatory P2Y4 response (pEC(50) = 6.1 +/- 0.2), while the diphosphate was inactive as either an agonist or antagonist in a P2Y6 receptor-mediated contractile response.
|
14 |
11754592
|
Our results suggest that new nucleotide agonists may be designed on the basis of the (N) conformation that favors selectivity for P2Y1, P2Y2, P2Y4, and P2Y11 receptors.
|
15 |
11754592
|
Methanocarba modification of uracil and adenine nucleotides: high potency of Northern ring conformation at P2Y1, P2Y2, P2Y4, and P2Y11 but not P2Y6 receptors.
|
16 |
11754592
|
The ability of the analogues to stimulate phospholipase C through activation of turkey P2Y1 or human P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors stably expressed in astrocytoma cells was measured.
|
17 |
11754592
|
At recombinant human P2Y1 and P2Y2 receptors, (N)-methanocarba-ATP was 138- and 41-fold, respectively, more potent than racemic (S)-methanocarba-ATP as an agonist.
|
18 |
11754592
|
(N)-Methanocarba-uridine 5'-triphosphate (UTP) was equipotent to UTP as an agonist at human P2Y2 receptors and also activated P2Y4 receptors with an EC(50) of 85 nM.
|
19 |
11754592
|
The triphosphate was more potent than UTP in inducing a dilatory P2Y4 response (pEC(50) = 6.1 +/- 0.2), while the diphosphate was inactive as either an agonist or antagonist in a P2Y6 receptor-mediated contractile response.
|
20 |
11754592
|
Our results suggest that new nucleotide agonists may be designed on the basis of the (N) conformation that favors selectivity for P2Y1, P2Y2, P2Y4, and P2Y11 receptors.
|
21 |
11754592
|
Methanocarba modification of uracil and adenine nucleotides: high potency of Northern ring conformation at P2Y1, P2Y2, P2Y4, and P2Y11 but not P2Y6 receptors.
|
22 |
11754592
|
The ability of the analogues to stimulate phospholipase C through activation of turkey P2Y1 or human P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors stably expressed in astrocytoma cells was measured.
|
23 |
11754592
|
At recombinant human P2Y1 and P2Y2 receptors, (N)-methanocarba-ATP was 138- and 41-fold, respectively, more potent than racemic (S)-methanocarba-ATP as an agonist.
|
24 |
11754592
|
(N)-Methanocarba-uridine 5'-triphosphate (UTP) was equipotent to UTP as an agonist at human P2Y2 receptors and also activated P2Y4 receptors with an EC(50) of 85 nM.
|
25 |
11754592
|
The triphosphate was more potent than UTP in inducing a dilatory P2Y4 response (pEC(50) = 6.1 +/- 0.2), while the diphosphate was inactive as either an agonist or antagonist in a P2Y6 receptor-mediated contractile response.
|
26 |
11754592
|
Our results suggest that new nucleotide agonists may be designed on the basis of the (N) conformation that favors selectivity for P2Y1, P2Y2, P2Y4, and P2Y11 receptors.
|
27 |
11754592
|
Methanocarba modification of uracil and adenine nucleotides: high potency of Northern ring conformation at P2Y1, P2Y2, P2Y4, and P2Y11 but not P2Y6 receptors.
|
28 |
11754592
|
The ability of the analogues to stimulate phospholipase C through activation of turkey P2Y1 or human P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors stably expressed in astrocytoma cells was measured.
|
29 |
11754592
|
At recombinant human P2Y1 and P2Y2 receptors, (N)-methanocarba-ATP was 138- and 41-fold, respectively, more potent than racemic (S)-methanocarba-ATP as an agonist.
|
30 |
11754592
|
(N)-Methanocarba-uridine 5'-triphosphate (UTP) was equipotent to UTP as an agonist at human P2Y2 receptors and also activated P2Y4 receptors with an EC(50) of 85 nM.
|
31 |
11754592
|
The triphosphate was more potent than UTP in inducing a dilatory P2Y4 response (pEC(50) = 6.1 +/- 0.2), while the diphosphate was inactive as either an agonist or antagonist in a P2Y6 receptor-mediated contractile response.
|
32 |
11754592
|
Our results suggest that new nucleotide agonists may be designed on the basis of the (N) conformation that favors selectivity for P2Y1, P2Y2, P2Y4, and P2Y11 receptors.
|
33 |
11985476
|
Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5'-triphosphate agonists at P2Y(1), P2Y(2), P2Y(4), and P2Y(11) receptors, but not P2Y(6) receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al.
|
34 |
11985476
|
The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y(1) or human P2Y(1) and P2Y(2) receptors stably expressed in astrocytoma cells.
|
35 |
11985476
|
Although beta,gamma-methylene-ATP was inactive at P2Y receptors, beta,gamma-methylene-(N)-methanocarba-ATP was a potent hP2Y(1) receptor agonist with an EC(50) of 160 nM and was selective versus hP2Y(2) and hP2Y(4) receptors.
|
36 |
11985476
|
The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied.
|
37 |
12623123
|
Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors.
|
38 |
12623123
|
The physiological role of the uracil nucleotide-preferring P2Y(6) and P2Y(4) receptors is still unclear, although they are widely distributed in various tissues.
|
39 |
12623123
|
In an effort to identify their biological functions, we found that activation by UDP of the rat P2Y(6) receptor expressed in 1321N1 human astrocytes significantly reduced cell death induced by tumor necrosis factor alpha (TNF alpha).
|
40 |
12623123
|
Activation of the human P2Y(4) receptor expressed in 1321N1 cells by UTP did not elicit this protective effect, although both receptors were coupled to phospholipase C.
|
41 |
12623123
|
The activation of P2Y(6) receptors prevented the activation of both caspase-3 and caspase-8 resulting from TNF alpha exposure.
|
42 |
12623123
|
Therefore, it is suggested that P2Y(6) receptors interact rapidly with the TNF alpha-related intracellular signals to prevent apoptotic cell death.
|
43 |
12623123
|
Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors.
|
44 |
12623123
|
The physiological role of the uracil nucleotide-preferring P2Y(6) and P2Y(4) receptors is still unclear, although they are widely distributed in various tissues.
|
45 |
12623123
|
In an effort to identify their biological functions, we found that activation by UDP of the rat P2Y(6) receptor expressed in 1321N1 human astrocytes significantly reduced cell death induced by tumor necrosis factor alpha (TNF alpha).
|
46 |
12623123
|
Activation of the human P2Y(4) receptor expressed in 1321N1 cells by UTP did not elicit this protective effect, although both receptors were coupled to phospholipase C.
|
47 |
12623123
|
The activation of P2Y(6) receptors prevented the activation of both caspase-3 and caspase-8 resulting from TNF alpha exposure.
|
48 |
12623123
|
Therefore, it is suggested that P2Y(6) receptors interact rapidly with the TNF alpha-related intracellular signals to prevent apoptotic cell death.
|
49 |
12623123
|
Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors.
|
50 |
12623123
|
The physiological role of the uracil nucleotide-preferring P2Y(6) and P2Y(4) receptors is still unclear, although they are widely distributed in various tissues.
|
51 |
12623123
|
In an effort to identify their biological functions, we found that activation by UDP of the rat P2Y(6) receptor expressed in 1321N1 human astrocytes significantly reduced cell death induced by tumor necrosis factor alpha (TNF alpha).
|
52 |
12623123
|
Activation of the human P2Y(4) receptor expressed in 1321N1 cells by UTP did not elicit this protective effect, although both receptors were coupled to phospholipase C.
|
53 |
12623123
|
The activation of P2Y(6) receptors prevented the activation of both caspase-3 and caspase-8 resulting from TNF alpha exposure.
|
54 |
12623123
|
Therefore, it is suggested that P2Y(6) receptors interact rapidly with the TNF alpha-related intracellular signals to prevent apoptotic cell death.
|
55 |
12850289
|
The expression of the nucleotide receptors P2X1, P2X2, P2X7, P2Y1, P2Y2 and P2Y4, in the pancreas of the streptozotocin-induced diabetic rat was investigated using immunohistochemistry.
|
56 |
12850289
|
Double-labelling experiments, using antibodies raised against insulin, somatostatin and glucagon, showed, for the first time, an increase in immunostaining for P2X7 receptors on islet glucagon-containing alpha cells (which had migrated to the interior), while no P2X7 receptors were found in beta and delta cells.
|
57 |
12850289
|
P2Y1 receptors were present in intra-islet capillaries, while P2Y4 receptors were found on both alpha and beta cells.
|
58 |
12850289
|
P2Y1 and P2Y2 receptor expression was also found in pancreatic duct cells and P2X1, P2X2, P2Y1 and P2Y2 receptors were identified in small blood vessels.
|
59 |
12850289
|
The expression of the nucleotide receptors P2X1, P2X2, P2X7, P2Y1, P2Y2 and P2Y4, in the pancreas of the streptozotocin-induced diabetic rat was investigated using immunohistochemistry.
|
60 |
12850289
|
Double-labelling experiments, using antibodies raised against insulin, somatostatin and glucagon, showed, for the first time, an increase in immunostaining for P2X7 receptors on islet glucagon-containing alpha cells (which had migrated to the interior), while no P2X7 receptors were found in beta and delta cells.
|
61 |
12850289
|
P2Y1 receptors were present in intra-islet capillaries, while P2Y4 receptors were found on both alpha and beta cells.
|
62 |
12850289
|
P2Y1 and P2Y2 receptor expression was also found in pancreatic duct cells and P2X1, P2X2, P2Y1 and P2Y2 receptors were identified in small blood vessels.
|
63 |
15081875
|
We have synthesized a series of symmetric aryl diisothiocyanate derivatives and examined their ability to inhibit phospholipase C (PLC) activity induced by activation of five subtypes of recombinant P2Y receptors.
|
64 |
15081875
|
Several derivatives were more potent at inhibiting action of UDP at both human and rat P2Y(6) receptors expressed in 1321N1 human astrocytes than activation of human P2Y(1), P2Y(2), P2Y(4) and P2Y(11) receptors.
|
65 |
15081875
|
MRS2567 and MRS2578 at 10microM did not affect the UTP (100nM)-induced responses of cells expressing P2Y(2) and P2Y(4) receptors, nor did they affect the 2-methylthio-ADP (30nM)-induced responses at the P2Y(1) receptor or the ATP (10microM)-induced responses at the P2Y(11) receptor.
|
66 |
15081875
|
Thus, we have identified potent, insurmountable antagonists of P2Y(6) receptors that are selective within the family of PLC-coupled P2Y receptors.
|
67 |
15081875
|
We have synthesized a series of symmetric aryl diisothiocyanate derivatives and examined their ability to inhibit phospholipase C (PLC) activity induced by activation of five subtypes of recombinant P2Y receptors.
|
68 |
15081875
|
Several derivatives were more potent at inhibiting action of UDP at both human and rat P2Y(6) receptors expressed in 1321N1 human astrocytes than activation of human P2Y(1), P2Y(2), P2Y(4) and P2Y(11) receptors.
|
69 |
15081875
|
MRS2567 and MRS2578 at 10microM did not affect the UTP (100nM)-induced responses of cells expressing P2Y(2) and P2Y(4) receptors, nor did they affect the 2-methylthio-ADP (30nM)-induced responses at the P2Y(1) receptor or the ATP (10microM)-induced responses at the P2Y(11) receptor.
|
70 |
15081875
|
Thus, we have identified potent, insurmountable antagonists of P2Y(6) receptors that are selective within the family of PLC-coupled P2Y receptors.
|
71 |
15465340
|
Similarly, at P2Y(2) and P2Y(4) receptors, nucleotides constrained in the (N) conformation interact equipotently with the corresponding ribosides.
|
72 |
15465340
|
A cLNA bisphosphate derivative MRS2584 21 displayed a K(i) value of 22.5 nM in binding to the human P2Y(1) receptor, and antagonized the stimulation of PLC by the potent P2Y(1) receptor agonist 2-methylthio-ADP (30 nM) with an IC(50) of 650 nM.
|
73 |
15465340
|
A l-alpha-threofuranosyl bisphosphate derivative 9 displayed an IC(50) of 15.3 microM for inhibition of 2-methylthio-ADP-stimulated PLC activity. l-alpha-Threofuranosyl-UTP 13 was a P2Y receptor agonist with a preference for P2Y(2) (EC(50)=9.9 microM) versus P2Y(4) receptors.
|
74 |
15465340
|
Similarly, at P2Y(2) and P2Y(4) receptors, nucleotides constrained in the (N) conformation interact equipotently with the corresponding ribosides.
|
75 |
15465340
|
A cLNA bisphosphate derivative MRS2584 21 displayed a K(i) value of 22.5 nM in binding to the human P2Y(1) receptor, and antagonized the stimulation of PLC by the potent P2Y(1) receptor agonist 2-methylthio-ADP (30 nM) with an IC(50) of 650 nM.
|
76 |
15465340
|
A l-alpha-threofuranosyl bisphosphate derivative 9 displayed an IC(50) of 15.3 microM for inhibition of 2-methylthio-ADP-stimulated PLC activity. l-alpha-Threofuranosyl-UTP 13 was a P2Y receptor agonist with a preference for P2Y(2) (EC(50)=9.9 microM) versus P2Y(4) receptors.
|
77 |
16280122
|
Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors.
|
78 |
16280122
|
In 1321N1 astrocytoma cells stably expressing human P2Y(1,2,4,6) receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization.
|
79 |
16280122
|
IC50 values at P2Y1 and P2Y6 receptors were <1 microM.
|
80 |
16359641
|
Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
|
81 |
16359641
|
With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors.
|
82 |
16359641
|
UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors.
|
83 |
16359641
|
Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors.
|
84 |
16359641
|
In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor.
|
85 |
16359641
|
Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors.
|
86 |
16359641
|
Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor).
|
87 |
16359641
|
In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.
|
88 |
16359641
|
Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
|
89 |
16359641
|
With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors.
|
90 |
16359641
|
UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors.
|
91 |
16359641
|
Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors.
|
92 |
16359641
|
In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor.
|
93 |
16359641
|
Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors.
|
94 |
16359641
|
Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor).
|
95 |
16359641
|
In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.
|
96 |
16359641
|
Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
|
97 |
16359641
|
With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors.
|
98 |
16359641
|
UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors.
|
99 |
16359641
|
Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors.
|
100 |
16359641
|
In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor.
|
101 |
16359641
|
Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors.
|
102 |
16359641
|
Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor).
|
103 |
16359641
|
In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.
|
104 |
16359641
|
Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
|
105 |
16359641
|
With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors.
|
106 |
16359641
|
UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors.
|
107 |
16359641
|
Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors.
|
108 |
16359641
|
In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor.
|
109 |
16359641
|
Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors.
|
110 |
16359641
|
Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor).
|
111 |
16359641
|
In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.
|
112 |
16359641
|
Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
|
113 |
16359641
|
With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors.
|
114 |
16359641
|
UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors.
|
115 |
16359641
|
Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors.
|
116 |
16359641
|
In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor.
|
117 |
16359641
|
Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors.
|
118 |
16359641
|
Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor).
|
119 |
16359641
|
In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.
|
120 |
16359641
|
Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
|
121 |
16359641
|
With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors.
|
122 |
16359641
|
UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors.
|
123 |
16359641
|
Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors.
|
124 |
16359641
|
In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor.
|
125 |
16359641
|
Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors.
|
126 |
16359641
|
Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor).
|
127 |
16359641
|
In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.
|
128 |
16359641
|
Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
|
129 |
16359641
|
With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors.
|
130 |
16359641
|
UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors.
|
131 |
16359641
|
Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors.
|
132 |
16359641
|
In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor.
|
133 |
16359641
|
Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors.
|
134 |
16359641
|
Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor).
|
135 |
16359641
|
In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.
|
136 |
16359641
|
Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
|
137 |
16359641
|
With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors.
|
138 |
16359641
|
UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors.
|
139 |
16359641
|
Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors.
|
140 |
16359641
|
In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor.
|
141 |
16359641
|
Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors.
|
142 |
16359641
|
Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor).
|
143 |
16359641
|
In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.
|
144 |
17302398
|
Synthesized nucleotides were tested as agonists at human P2Y receptors expressed in 1321N1 astrocytoma cells. 2'-Amino and 2-thio modifications were synergized to enhance potency and selectivity; compound 8 (EC50 = 8 nM) was 300-fold P2Y2-selective versus P2Y4. 2'-Amine acetylation reduced potency, and trifluoroacetylation produced intermediate potency. 5-Amino nucleobase substitution did not enhance P2Y2 potency through a predicted hydrophilic interaction possibly because of destabilization of the receptor-favored Northern conformation of ribose.
|
145 |
17509560
|
Purinergic P2Y-receptor agonists amplify glucose-induced insulin secretion from pancreatic beta-cells, thus offering new opportunities for the treatment of type 2 diabetes.
|
146 |
17509560
|
The molecular analysis evidenced the presence of five different purinergic P2Y receptor subtypes (P2Y(1), P2Y(2), P2Y(4), P2Y(6) and P2Y(12)), which were expressed at similar levels.
|
147 |
17509560
|
The analysis of ATP-alpha-[(35)S] pharmacological profile on both sites permitted to classify the high affinity binding site as representative of the purinergic P2Y(1) receptor subtype and the low affinity binding site of the P2Y(4) and/or P2Y(6) receptor subtypes.
|
148 |
17509560
|
Although purinergic P2Y(1) receptor, or a P2Y(1)-like subtype, has been generally considered as that implicated in the modulation of glucose-induced insulin release, the present data show that the beta-cell expresses a complex profile of purinergic P2Y receptor subtypes, the functional implication of which remains to be fully elucidated.
|
149 |
18600475
|
Agonists selective for P2Y(1), P2Y(2), and P2Y(6) receptors and nucleotide antagonists selective for P2Y(1) and P2Y(12) receptors are now known.
|
150 |
18600475
|
At the P2Y(1) and P2Y(12) receptors, nucleotide agonists (5'-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern.
|
151 |
18600475
|
Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y(1) and P2Y(6) receptors.
|
152 |
18600475
|
Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y(12) receptor antagonists with antithrombotic activity.
|
153 |
18600475
|
Selective agonists for the P2Y(4), P2Y(11), and P2Y(13) receptors and selective antagonists for P2Y(4) and P2Y(14) receptors have not yet been identified.
|
154 |
21856926
|
In arteries from GK rats (vs. those from Wistar rats), 1) ATP- and UTP-induced contractions, which were blocked by the nonselective P2 antagonist suramin, were enhanced, and these enhancements were suppressed by endothelial denudation, by cyclooxygenase (COX) inhibitors, or by a cytosolic phospholipase A(2) (cPLA(2)) inhibitor; 2) both nucleotides induced increased release of PGE(2) and PGF(2α); 3) nucleotide-stimulated cPLA(2) phosphorylations were increased; 4) COX-1 and COX-2 expressions were increased; and 5) neither P2Y2 nor P2Y6 receptor expression differed, but P2Y4 receptor expression was decreased.
|
155 |
21856926
|
Mesenteric arteries from GK rats treated with losartan exhibited (vs. untreated GK) 1) reduced nucleotide-induced contractions, 2) suppressed UTP-induced release of PGE(2) and PGF(2α), 3) suppressed UTP-stimulated cPLA(2) phosphorylation, 4) normalized expressions of COX-2 and P2Y4 receptors, and 5) reduced superoxide generation.
|
156 |
21856926
|
Our data suggest that the diabetes-related enhancement of ATP-mediated vasoconstriction was due to P2Y receptor-mediated activation of the cPLA(2)/COX pathway and, moreover, that losartan normalizes such contractions by a suppressing action within this pathway.
|
157 |
21856926
|
In arteries from GK rats (vs. those from Wistar rats), 1) ATP- and UTP-induced contractions, which were blocked by the nonselective P2 antagonist suramin, were enhanced, and these enhancements were suppressed by endothelial denudation, by cyclooxygenase (COX) inhibitors, or by a cytosolic phospholipase A(2) (cPLA(2)) inhibitor; 2) both nucleotides induced increased release of PGE(2) and PGF(2α); 3) nucleotide-stimulated cPLA(2) phosphorylations were increased; 4) COX-1 and COX-2 expressions were increased; and 5) neither P2Y2 nor P2Y6 receptor expression differed, but P2Y4 receptor expression was decreased.
|
158 |
21856926
|
Mesenteric arteries from GK rats treated with losartan exhibited (vs. untreated GK) 1) reduced nucleotide-induced contractions, 2) suppressed UTP-induced release of PGE(2) and PGF(2α), 3) suppressed UTP-stimulated cPLA(2) phosphorylation, 4) normalized expressions of COX-2 and P2Y4 receptors, and 5) reduced superoxide generation.
|
159 |
21856926
|
Our data suggest that the diabetes-related enhancement of ATP-mediated vasoconstriction was due to P2Y receptor-mediated activation of the cPLA(2)/COX pathway and, moreover, that losartan normalizes such contractions by a suppressing action within this pathway.
|
160 |
22052557
|
The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis.
|
161 |
22052557
|
P2Y(11) receptors were abundantly and diffusely expressed intracellularly and were more explicitly expressed in type I than in type II fibres, whereas P2X(1) and P2Y(4) showed no fibre-type specificity.
|
162 |
15280443
|
Stimulation of subcultured CSMC with UTP, ITP, or ATP induced a concentration-dependent increase in cellular DNA content, protein synthesis, cell number, and proliferating cell nuclear antigen expression, indicating a mitogenic role for P2Y(2) receptors.
|
163 |
15280443
|
In addition, reverse transcription-polymerase chain reaction analysis showed that P2Y(2) receptor mRNA was dramatically increased in cells of organ-cultured arteries compared with freshly harvested arteries, whereas the P2Y(6) receptor mRNA level was unchanged, and the P2Y(4) receptor mRNA was undetectable.
|