# |
PMID |
Sentence |
1 |
17359941
|
With the assessment of MGN glucuronide formation across a panel of recombinant UDP-glucuronosyltransferase (UGT) isoforms (UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7), only UGT1A3 and UGT2B7 exhibited high MGN glucuronosyltransferase activity.
|
2 |
17359941
|
The K(m) values of MGN glucuronidation in recombinant UGT1A3 and UGT2B7 microsomes were close to those in human liver microsomes.
|
3 |
17359941
|
The formation of MGN glucuronidation by human liver microsomes was effectively inhibited by quercetin (substrate for UGT1A3) and diclofenac (substrate for UGT2B7), respectively.
|
4 |
17359941
|
These results demonstrate that UGT1A3 and UGT2B7 are catalytic enzymes in MGN carboxyl-glucuronidation in human liver.
|
5 |
22648071
|
UDP-glucuronosyltransferase 1A1 is the principal enzyme responsible for puerarin metabolism in human liver microsomes.
|
6 |
22648071
|
In vitro, we used a UDP-glucuronosyltransferase (UGT) reaction screening method with 12 recombinant human UGTs to demonstrate that formation of puerarin-7-O-glucuronide was catalyzed by UGT1A1, 1A9, 1A10, 1A3, 1A6, 1A7, and 1A8.
|
7 |
22648071
|
The V (max) of UGT1A1 was two- to threefold higher than the levels of UGT1A9 or 1A10, with a lower K ( m ) value and a higher V (max)/K ( m ) value.
|
8 |
23371804
|
The inhibitory potentials of DA-9801, D. rhizoma extract, D. nipponica Makino extract, and dioscin, an active component of DA-9801, on eight human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes were investigated in human liver microsomes using liquid chromatography-tandem mass spectrometry.
|
9 |
23371804
|
DA-9801 showed slight inhibition of CYP1A2, CYP2C8, UGT1A1, and UGT1A9 enzyme activities with IC(50) values of 396.4, 449.9, 226.0, and 408.8 μg/mL, respectively.
|
10 |
23371804
|
D. rhizoma extract showed negligible inhibition of CYP and UGT activities, but D. nipponica extract slightly inhibited CYP1A2, CYP2C8, CYP2C9, UGT1A1, and UGT1A9 activities with IC(50) values of 264.2, 237.1, 206.8, 302.4, and 383.1 μg/mL, respectively.
|
11 |
23371804
|
DA-9801 showed volume per dose index values of 0.44-0.88 L for a 200-mg dose, suggesting that they may not cause the inhibition of the metabolism of CYP1A2, CYP2C8, UGT1A1, and UGT1A9-catalyzed drugs in humans.
|
12 |
23371804
|
The inhibitory potentials of DA-9801, D. rhizoma extract, D. nipponica Makino extract, and dioscin, an active component of DA-9801, on eight human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes were investigated in human liver microsomes using liquid chromatography-tandem mass spectrometry.
|
13 |
23371804
|
DA-9801 showed slight inhibition of CYP1A2, CYP2C8, UGT1A1, and UGT1A9 enzyme activities with IC(50) values of 396.4, 449.9, 226.0, and 408.8 μg/mL, respectively.
|
14 |
23371804
|
D. rhizoma extract showed negligible inhibition of CYP and UGT activities, but D. nipponica extract slightly inhibited CYP1A2, CYP2C8, CYP2C9, UGT1A1, and UGT1A9 activities with IC(50) values of 264.2, 237.1, 206.8, 302.4, and 383.1 μg/mL, respectively.
|
15 |
23371804
|
DA-9801 showed volume per dose index values of 0.44-0.88 L for a 200-mg dose, suggesting that they may not cause the inhibition of the metabolism of CYP1A2, CYP2C8, UGT1A1, and UGT1A9-catalyzed drugs in humans.
|
16 |
23371804
|
The inhibitory potentials of DA-9801, D. rhizoma extract, D. nipponica Makino extract, and dioscin, an active component of DA-9801, on eight human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes were investigated in human liver microsomes using liquid chromatography-tandem mass spectrometry.
|
17 |
23371804
|
DA-9801 showed slight inhibition of CYP1A2, CYP2C8, UGT1A1, and UGT1A9 enzyme activities with IC(50) values of 396.4, 449.9, 226.0, and 408.8 μg/mL, respectively.
|
18 |
23371804
|
D. rhizoma extract showed negligible inhibition of CYP and UGT activities, but D. nipponica extract slightly inhibited CYP1A2, CYP2C8, CYP2C9, UGT1A1, and UGT1A9 activities with IC(50) values of 264.2, 237.1, 206.8, 302.4, and 383.1 μg/mL, respectively.
|
19 |
23371804
|
DA-9801 showed volume per dose index values of 0.44-0.88 L for a 200-mg dose, suggesting that they may not cause the inhibition of the metabolism of CYP1A2, CYP2C8, UGT1A1, and UGT1A9-catalyzed drugs in humans.
|
20 |
21123165
|
Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite.
|
21 |
21123165
|
We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors.
|
22 |
21123165
|
Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized.
|
23 |
21123165
|
UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation.
|
24 |
21123165
|
Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation.
|
25 |
21123165
|
Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite.
|
26 |
21123165
|
We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors.
|
27 |
21123165
|
Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized.
|
28 |
21123165
|
UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation.
|
29 |
21123165
|
Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation.
|
30 |
21690265
|
Reaction phenotyping studies using recombinant enzymes indicated a role of CYP3A4/3A5, CYP2D6, and UGT1A9/2B7 in the metabolism of PF-04971729.
|
31 |
21690265
|
No competitive or time-dependent inhibition of the major human cytochrome P450 enzymes was discerned with PF-04971729.
|