# |
PMID |
Sentence |
1 |
11704558
|
The data indicate that extracellular nucleotides modulate podocyte function mainly by an activation of both P2Y(2) and P2Y(6) receptors.
|
2 |
15056981
|
In the present study, we have used RT-PCR to identify mRNAs for specific P2Y receptor subtypes expressed in the rat glomerulus: mRNA for P2Y1, P2Y2, P2Y4 and P2Y6 receptors was detected.
|
3 |
15056981
|
Functional expression of P2Y1 and P2Y2/P2Y4, but not P2Y6, receptors in intact glomeruli was confirmed by measuring the relative stimulation of the inositol phosphate pathway induced by selective agonists of a particular receptor subtype.
|
4 |
15056981
|
Finally, we have used available polyclonal antibodies to confirm the expression of P2Y1 and P2Y2 in the glomerulus, in mesangial cells and glomerular epithelial cells (podocytes), respectively; but we could not demonstrate P2Y4 or P2Y6 receptor expression by this means.
|
5 |
15056981
|
In the present study, we have used RT-PCR to identify mRNAs for specific P2Y receptor subtypes expressed in the rat glomerulus: mRNA for P2Y1, P2Y2, P2Y4 and P2Y6 receptors was detected.
|
6 |
15056981
|
Functional expression of P2Y1 and P2Y2/P2Y4, but not P2Y6, receptors in intact glomeruli was confirmed by measuring the relative stimulation of the inositol phosphate pathway induced by selective agonists of a particular receptor subtype.
|
7 |
15056981
|
Finally, we have used available polyclonal antibodies to confirm the expression of P2Y1 and P2Y2 in the glomerulus, in mesangial cells and glomerular epithelial cells (podocytes), respectively; but we could not demonstrate P2Y4 or P2Y6 receptor expression by this means.
|
8 |
15056981
|
In the present study, we have used RT-PCR to identify mRNAs for specific P2Y receptor subtypes expressed in the rat glomerulus: mRNA for P2Y1, P2Y2, P2Y4 and P2Y6 receptors was detected.
|
9 |
15056981
|
Functional expression of P2Y1 and P2Y2/P2Y4, but not P2Y6, receptors in intact glomeruli was confirmed by measuring the relative stimulation of the inositol phosphate pathway induced by selective agonists of a particular receptor subtype.
|
10 |
15056981
|
Finally, we have used available polyclonal antibodies to confirm the expression of P2Y1 and P2Y2 in the glomerulus, in mesangial cells and glomerular epithelial cells (podocytes), respectively; but we could not demonstrate P2Y4 or P2Y6 receptor expression by this means.
|
11 |
34978536
|
Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2.
|
12 |
34978536
|
Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli.
|
13 |
34978536
|
These responses were blocked in TRPC6 and P2Y2 KO mice.
|
14 |
34978536
|
Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2.
|
15 |
34978536
|
Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli.
|
16 |
34978536
|
These responses were blocked in TRPC6 and P2Y2 KO mice.
|
17 |
34978536
|
Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2.
|
18 |
34978536
|
Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli.
|
19 |
34978536
|
These responses were blocked in TRPC6 and P2Y2 KO mice.
|