Ignet
Search (e.g., vaccine, IFNG): Help
About
Home
Introduction
Statistics
Programs
Dignet
Gene
GenePair
BioSummarAI
Help & Docs
Documents
Help
FAQs
Links
Acknowledge
Disclaimer
Contact Us
UM Logo

UMMS Logo

UMMS Logo

Gene Pair Information

Gene Pair: MAPK1, IFNG

Related Sentences

# PMID Sentence
1 16728393 There was no functional difference in the signal transducers and activators of transcription (STAT) pathways between progenitors and mature oligodendrocytes as determined by induction of IRF1 mRNA in response to IFNG.
2 16728393 Therefore, we concluded that simultaneous activation of the STAT pathway by IFNG and of the ERK pathway by exogenous trophic factors played a role in the stage-specific IFNG-induced cytotoxicity in oligodendroglial progenitors.
3 19879772 TNFalpha and TGF-beta1 influence IL-18-induced IFNgamma production through regulation of IL-18 receptor and T-bet expression.
4 19879772 IL-18 is a pro-inflammatory cytokine that drives dendritic cell maturation and mediates IFNgamma production.
5 19879772 In this study, we demonstrate that in the dendritic precursor-like cell line KG-1, IFNgamma production induced by IL-18 is potentiated (>5-fold) by TNFalpha and completely suppressed by TGF-beta1.
6 19879772 IL-18 stimulation rapidly activates different MAPK signalling pathways but only blocking of p38 activation alleviates IFNgamma production.
7 19879772 The mechanism through which TNFalpha enhances IL-18 induced IFNgamma production is by promoting IL-18 receptor alpha-chain expression which results in higher levels of p38 activation and induces expression of T-bet, a transcriptional regulator of the IFNG gene.
8 19879772 In contrast, TGF-beta1 rapidly suppresses IFNgamma production by limiting IL-18 receptor numbers at the cell surface and preventing induction of T-bet expression.
9 19879772 TGF-beta1 experience by cells leads to sustained long-term inactivation of TNFalpha/IL-18-mediated cell activation but not IL-18 induced p38 activation suggesting transcriptional silencing of the T-BET and/or IFNG promoter independent of MAPK signalling.
10 22584669 Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway.
11 22584669 To evaluate in vitro whether pro-inflammatory cytokines involved in the pathogenesis of respiratory disorders could alter TJ organization and epithelial barrier integrity, and to characterize the signal transduction pathway involved Calu-3 airway epithelial cells were exposed to TNF-a, IL-4 and IFN-g to assess changes in: (a) TJ assembly, that is, occludin and zonula occludens (ZO)-1 expression and localization, evaluated by confocal microscopy; (b) apoptotic activity, quantified using terminal transferase deoxyuridine triphosphate nick-end labeling staining; (c) epithelial barrier integrity, detected as transmembrane electrical resistance and expressed as G(T) values; (d) epidermal growth factor receptor (EGFR)-dependent mitogenactivated protein (MAP) kinase (MAPK)/extracellular signal-regulated kinases (ERK)1/2 phosphorylation, assessed by western blotting.
12 22584669 The degree ZO-1 and occludin colocalization was 62±2% in control cultures and significantly decreased in the presence of TNF-a (47±3%), IL-4 (43±1%) and INF-g (35±3%).
13 22584669 G(T) values were, respectively, 1.030±0.0, 1.300±0.04, 1.260±0.020 and 2.220±0.015 (mS/cm²)1000 in control cultures and in those exposed to TNF-a, IFN-g and IL-4.
14 22584669 The involvement of EGFR-dependent MAPK/ERK1/2 signaling pathway in cytokine-induced damage was demonstrated by a significant increase in threonine/tyrosine phosphorylation of ERK1/2, already detectable after 5 min incubation.
15 22584669 All these cytokine-induced changes were markedly prevented when Calu-3 cells were cultured in the presence of an EGFR inhibitor (AG1478, 1 μM) or a MAP kinase inhibitor (U0126, 25 μM).
16 22584669 In conclusion, cytokine-induced epithelial injury includes TJ disassembly and epithelial barrier permeability alteration and involves the EGFR-dependent MAPK/ERK1/2 signaling pathway.
17 22874566 IFNG and autophagy: a critical role for the ER-stress mediator ATF6 in controlling bacterial infections.
18 22874566 The death-associated protein kinase 1 (DAPK1), originally identified as an activator of IFNG-induced cell death, controls autophagy.
19 22874566 Previously, we have shown that transcription factor CEBPB (C/EBP-β) regulates IFNG-induced expression of Dapk1 through a CRE/ATF motif in its enhancer.
20 22874566 In this paper we have shown that ATF6, an ER-resident transcription factor regulates IFNG-induced Dapk1 expression through the CRE/ATF site, in association with CEBPB.
21 22874566 IFNG-stimulated proteolytic cleavage of ATF6, and MAPK1/3 (ERK2/1)-dependent phosphorylation of CEBPB together control the expression of Dapk1.
22 22874566 Consistent with their requirement for DAPK1 expression, IFNG fails to induce autophagy in cells lacking either Atf6 or Cebpb.