| # |
PMID |
Sentence |
| 1 |
16237092
|
Using conditional introduction of dominant-negative factors, we now show that T-bet and GATA-3 are far more critical in establishment than maintenance of IFN-gamma and IL-4 activity during Th1 and Th2 maturation, respectively.
|
| 2 |
16237092
|
T-bet plus Hlx can disrupt ifng silencing when introduced into developing Th2 cells, but they fail to perturb ifng silencing in mature Th2 cells.
|
| 3 |
16520391
|
T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription.
|
| 4 |
16520391
|
T helper type 1 (Th1) development is facilitated by interrelated changes in key intracellular factors, particularly signal transducer and activator of transcription (STAT)4, T-bet, and GATA-3.
|
| 5 |
16520391
|
Here we show that CD4+ cells from T-bet-/- mice are skewed toward Th2 differentiation by high endogenous GATA-3 levels but exhibit virtually normal Th1 differentiation provided that GATA-3 levels are regulated at an early stage by anti-interleukin (IL)-4 blockade of IL-4 receptor (R) signaling.
|
| 6 |
16520391
|
In addition, under these conditions, Th1 cells from T-bet-/- mice manifest IFNG promotor accessibility as detected by histone acetylation and deoxyribonuclease I hypersensitivity.
|
| 7 |
16520391
|
In related studies, we show that the negative effect of GATA-3 on Th1 differentiation in T-bet-/- cells arises from its ability to suppress STAT4 levels, because if this is prevented by a STAT4-expressing retrovirus, normal Th1 differentiation is observed.
|
| 8 |
16520391
|
Finally, we show that retroviral T-bet expression in developing and established Th2 cells leads to down-regulation of GATA-3 levels.
|
| 9 |
16520391
|
These findings lead to a model of T cell differentiation that holds that naive T cells tend toward Th2 differentiation through induction of GATA-3 and subsequent down-regulation of STAT4/IL-12Rbeta2 chain unless GATA-3 levels or function is regulated by T-bet.
|
| 10 |
16520391
|
Thus, the principal function of T-bet in developing Th1 cells is to negatively regulate GATA-3 rather than to positively regulate the IFNG gene.
|
| 11 |
19828627
|
Ikaros is a regulator of Il10 expression in CD4+ T cells.
|
| 12 |
19828627
|
Here we show that Ikaros, a zinc finger DNA-binding protein, plays an important role in the regulation of Il10 in murine CD4(+) T cells.
|
| 13 |
19828627
|
Upon initial stimulation of the TCR, T cells deficient in Ikaros express significantly lower levels of IL-10 compared with wild-type T cells.
|
| 14 |
19828627
|
In addition, under Th2 skewing conditions, which induce IL-10 production by wild-type T cells, Ikaros null T cells are unable to properly differentiate, producing only low levels of IL-10.
|
| 15 |
19828627
|
Expression of a dominant-negative isoform of Ikaros in wild-type Th2 cells represses IL-10 production but does not significantly alter expression levels of the genes encoding the transcription factors GATA-3 and T-bet.
|
| 16 |
19828627
|
Furthermore, expression of Ikaros in Ikaros null T cells restores expression of the Th2 cytokines IL-10 and IL-4 while reducing production of the Th1 cytokine, IFN-gamma.
|
| 17 |
19828627
|
Coexpression of Ikaros and GATA-3 further increases IL-10 production, showing that these two factors have an additive effect on activating Il10 expression.
|
| 18 |
19828627
|
Finally, we show that Ikaros binds to conserved regulatory regions of the Il10 gene locus in Th2 cells, supporting a direct role for Ikaros in Il10 expression.
|
| 19 |
19828627
|
Thus, we provide evidence for Ikaros as a regulator of Il10 and Ifng gene expression and suggest a role for Ikaros in directing lineage-specific cytokine gene activation and repression.
|
| 20 |
20399120
|
The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-gamma.
|
| 21 |
20399120
|
The transcription factor GATA3 is crucial for the differentiation of naive CD4(+) T cells into T helper 2 (Th2) cells.
|
| 22 |
20399120
|
Here, we show that deletion of Gata3 allowed the appearance of interferon-gamma (IFN-gamma)-producing cells in the absence of interleukin-12 (IL-12) and IFN-gamma.
|
| 23 |
20399120
|
Such IFN-gamma production was transcription factor T-bet independent.
|
| 24 |
20399120
|
Another T-box-containing transcription factor Eomes, but not T-bet, was induced both in GATA3-deficient CD4(+) T cells differentiated under Th2 cell conditions and in Th2 cells with enforced Runx3 expression, contributing to IFN-gamma production.
|
| 25 |
20399120
|
GATA3 overexpression blocked Runx3-mediated Eomes induction and IFN-gamma production, and GATA3 protein physically interacted with Runx3 protein.
|
| 26 |
20399120
|
Furthermore, we found that Runx3 directly bound to multiple regulatory elements of the Ifng gene and that blocking Runx3 function in either Th1 or GATA3-deficient "Th2" cells results in diminished IFN-gamma production by these cells.
|
| 27 |
20399120
|
Thus, the Runx3-mediated pathway, actively suppressed by GATA3, induces IFN-gamma production in a STAT4- and T-bet-independent manner.
|
| 28 |
21480212
|
Rapamycin-sensitive signals control TCR/CD28-driven Ifng, Il4 and Foxp3 transcription and promoter region methylation.
|
| 29 |
21480212
|
Here, we report that both mTOR complex 1 and mTOR complex 2 are readily activated following TCR/CD28 engagement and are critical for early expression of Ifng, Il4 and Foxp3, and for effector T cell differentiation in the absence of polarizing cytokines.
|
| 30 |
21480212
|
While inhibition of mTOR complex 1 and cell division were evident at low doses of RAPA, inhibition of mTOR complex 2, Ifng, Il4 and Foxp3 expression, and T-cell polarization required higher doses and more prolonged treatments.
|
| 31 |
21480212
|
We found that while T-bet and GATA3 were readily induced following TCR/CD28 engagement, administration of RAPA delayed their expression, and interfered with the loss of DNA methylation within Ifng and Il4 promoter regions.
|
| 32 |
22019771
|
We used a gene panel of regulatory/inflammatory molecules (FOXP3, GATA3, IL10, TGFB1, TGFBR1/ TBX21, TNF and IFNG) to investigate the gene expression profile in peripheral blood mononuclear cells of renal-transplanted individuals experiencing OT compared to transplanted individuals not displaying OT and healthy individuals (HI).
|
| 33 |
22019771
|
OT subjects showed a predominant regulatory (REG) profile with higher gene expression of GATA3, FOXP3, TGFB1 and TGFB receptor 1 compared to the other groups.
|
| 34 |
23668260
|
The infected mice displayed a significant up-regulation in the expression of chemokines (Cxcl1, Cxcl2 and Ccl2), numerous pro-inflammatory cytokines (Ifng, Il1b, Il6, and Il17f), as well as Il22 and a number of anti-microbial peptides (Defa1, Defa28, Defb1, Slpi and Reg3g) at the site(s) of infection.
|
| 35 |
23668260
|
However, CD4 T cells of the untreated and C. difficile-infected mice expressed similar levels of CD69 and CD25.
|
| 36 |
23668260
|
Neither tissue had up-regulated levels of Tbx21, Gata3 or Rorc.
|
| 37 |
23668260
|
They also displayed significantly higher phosphorylation of AKT and signal transducer and activator of transcription 3 (STAT3), an indication of pro-survival signalling.
|
| 38 |
23668260
|
These data underscore the local, innate, pro-inflammatory nature of the response to C. difficile and highlight eIF2α phosphorylation and the interleukin-22-pSTAT3-RegIIIγ axis as two of the pathways that could be used to contain and counteract the damage inflicted on the intestinal epithelium.
|