# |
PMID |
Sentence |
1 |
21900253
|
NY-ESO-1 binding to immature dendritic cells was dependent on its polymeric structure and involved Toll-like receptor-4 (TLR4) on the surface of immature dendritic cells in mouse and human.
|
2 |
21900253
|
Gene gun-delivered plasmid encoding the wild-type NY-ESO-1 readily induced T cell-dependent antibody (Ab) responses in wild-type C57BL/10 mice but not TLR4-knock-out C57BL/10ScNJ mice.
|
3 |
11120859
|
In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients.
|
4 |
11120859
|
A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes.
|
5 |
11259659
|
In this study, a CD4(+) T cell line was generated from peripheral blood mononuclear cells of a melanoma patient and was shown to recognize NY-ESO-1 peptides presented by HLA-DP4, a dominant MHC class II allele expressed in 43--70% of Caucasians.
|
6 |
12747755
|
NY-ESO-1 serum antibody is associated with detectable NY-ESO-1-specific CD8+ T cell reactivity.
|
7 |
12747756
|
The most frequently expressed CT genes were SSX-1 and GAGE, which were found in 8/21 (38%) HCC samples, followed by HOM-TES-14/SCP-1 (6/21 or 29%), MAGE-3 (5/21 or 24%), HOM-TES-85 and MAGE-1 (4/21 or 19% each), whereas SSX-4 and HOM-MEL-40/SSX-2 were only expressed in 2/21 cases each, MAGE-4 in one case, and NY-ESO-1 not at all.
|
8 |
12747757
|
Using a modified approach we identified the NY-ESO-1 p94-102 peptide as being recognized by CD8+ T cells in the context of HLA- B51.
|
9 |
12681366
|
In the 17 ALL cases studied, SCP3a, SSX-1, HOM-MEL-40/SXX-2 and HOM-TES-14/SCP-1 were expressed in 47, 29, 29 and 12%, respectively, whereas no case was positive for NY-ESO-1. 65% of patients with ALL showed expression of at least one, 41% of two or more of the five CT-genes investigated.
|
10 |
16094643
|
In 98 evaluable cases, SCP-1 and SSX-4 were expressed most frequently (both 65%), followed by HOM-TES-85/CT-8 (47%), GAGE (26%), SSX-1 (20%), NY-ESO-1 (13%), MAGE-3 (11%), SSX-2 (8%), CT-10 (7%), MAGE-4 (4%) and CT-7 (1%).
|
11 |
16152624
|
Two partly overlapping NY-ESO-1 epitopes p49-66 and p55-72 were identified as targets for NY-ESO-1-specific CD4+ T cells.
|
12 |
16311731
|
Direct injection of a lentiviral vector encoding the melanoma antigen NY-ESO-1 in HLA-A2 transgenic mice primed NY-ESO-1-specific CD8+ cells that could be expanded by boosting with an NY-ESO-1 vaccinia virus.
|
13 |
19033668
|
KBMA L. monocytogenes expressing full-length NY-ESO-1 protein, another melanoma-associated antigen, delivered the antigen for presentation by MHC class I and class II molecules independent of the MHC haplotype of the DC donor.
|
14 |
19728336
|
Peptide-based vaccines have led to the induction of antigen-specific CD8(+) T-cell responses in patients with NY-ESO-1 positive cancers.
|
15 |
20375244
|
Oral immunizations of HLA-A*0201 transgenic mice with recombinant SL3261 strains encoding NY-ESO-1 p157-165 or p157-167 induced NY-ESO-1 p157-165-specific CD8(+) T cells, detected by an HLA-A*0201 pentamer, and induced a T-cell response detected by an enzyme-linked immunospot assay.
|
16 |
20733202
|
Single-cell analysis of specific CD8(+) T cells revealed that peptide immunization caused apoptosis of >80% of NY-ESO-1(81-88)-specific CD8(+) T cells at tumor sites and repetitive immunization further diminished the number of specific CD8(+) T cells.
|
17 |
20842062
|
These studies demonstrated that the vaccine was able to induce HLA-A*0201-restricted T-cell responses against gp100 and NY-ESO-1, detectable directly ex vivo, in HLA-A2/K-transgenic mice.
|
18 |
17441676
|
Analysis of peptides recognized by CD4 and CD8 T cells revealed two dominant NY-ESO-1 regions, 73-114 and 121-144.
|
19 |
21131422
|
Strikingly, although the three LAGE-1-derived epitopes are highly homologous to NY-ESO-1-derived epitopes, LAGE-1-specific CD4(+) T cells did not cross-react with NY-ESO-1.
|
20 |
21131422
|
We observed that most patients with spontaneous NY-ESO-1-specific responses exhibited spontaneous CD4(+) T cell responses to at least one of the three immunodominant LAGE-1 epitopes.
|
21 |
21131422
|
Additionally, nearly half of the patients with spontaneous LAGE-1-specific CD4(+) T cell responses had circulating LAGE-1-specific Abs that recognized epitopes located in the C-terminal portion of LAGE-1, which is distinct from NY-ESO-1.
|
22 |
21131422
|
These findings demonstrate the capability of LAGE-1 to stimulate integrated cellular and humoral immune responses that do not cross-react with NY-ESO-1.
|
23 |
21149605
|
We generated two novel targeting proteins consisting of the full-length NY-ESO-1 fused to the C terminus of two human mAbs against the human mannose receptor and DEC-205, both internalizing molecules expressed on APC.
|
24 |
21149605
|
Whereas nontargeted and Ab-targeted NY-ESO-1 proteins similarly activated CD4(+) T cells, cross-presentation to CD8(+) T cells was only efficiently induced by targeted NY-ESO-1.
|
25 |
21465316
|
Anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) antibodies, such as ipilimumab, have generated measurable immune responses to Melan-A, NY-ESO-1, and gp100 antigens in metastatic melanoma.
|
26 |
10878395
|
These CD4+ T cells recognized NY-ESO-1 peptides or protein pulsed on HLA-DR4+ EBV B cells, and also recognized tumor cells expressing HLA-DR4 and NY-ESO-1.
|
27 |
21933959
|
To understand why some patients with NY-ESO-1 antibody failed to experience clinical benefit, we analyzed NY-ESO-1-specific CD4(+) and CD8(+) T-cell responses by intracellular multicytokine staining in 20 NY-ESO-1-seropositive patients and found a surprising dissociation between NY-ESO-1 antibody and CD8 responses in some patients.
|
28 |
21785964
|
We have previously identified CTAg-specific immune responses in patients with multiple myeloma and reported that recognition of the MAGE-A1(289-298) peptide, which is described as being restricted by HLA-B*0702, was the most frequent response seen with our peptide panel.
|