# |
PMID |
Sentence |
1 |
3883988
|
Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats.
|
2 |
3883988
|
The effect of diabetes on casein kinase 2 persisted after partial purification of the enzyme by glycerol-density-gradient centrifugation and affected also its activity on other protein substrates such as phosvitin, high-mobility-group protein 14 and glycogen synthase.
|
3 |
1999482
|
To identify the putative postreceptor lesion responsible for insulin resistance in Pima Indians, we investigated the influence of insulin on the activity of casein kinase II (CKII) in skeletal muscle of seven insulin-sensitive, four insulin-resistant, nondiabetic, and five insulin-resistant diabetic Pima Indians during a 2 h hyperinsulinemic, euglycemic clamp.
|
4 |
1999482
|
These results suggest that insulin stimulates CKII activity in human skeletal muscle by a mechanism involving phosphorylation of either CKII or of an effector molecule, and support the idea that elevated basal activity in resistant subjects results from insulin action.
|
5 |
1999482
|
It appears that the ability of insulin to activate CKII in skeletal muscle is not impaired in insulin-resistant Pima Indians, and that the biochemical lesion responsible for insulin resistance occurs either downstream from CKII or in a different pathway of insulin action.
|
6 |
1654859
|
FA and CK-II activate PP-1 in vitro and might be involved in the activation of PP-1 by insulin.
|
7 |
1654859
|
Following muscle fractionation we found that (1) diabetes decreased both basal and trypsin-stimulated PP-1 activities; the decrease was more significant in the glycogen-bound and microsomal fractions than in the cytosol (cytosolic PP-1 decreased as specific activity but not as activity/g of muscle); also PP-2A was lower in diabetic cytosols; (2) less G was immunoprecipitated from diabetic glycogen-bound fractions compared to controls, while I-2 was not significantly changed; (3) diabetes decreased also FA (assayed as PP-1 activator) and CK-II (assayed using a synthetic peptide as substrate); (4) diabetes did not have any effect on phosphorylase (a + b) activity in the glycogen-bound fraction.
|