# |
PMID |
Sentence |
1 |
21233843
|
Herein, we show that transforming growth factor ?-activated kinase 1 (TAK1) directly regulates stem cell factor (SCF) expression, which activates the protein kinase B (PKB)? pro-survival pathway in a cell-autonomous manner to protect keratinocytes from ROS-mediated cell death.
|
2 |
21233843
|
Ectopic expression of TAK1 or treatment with exogenous recombinant SCF restored the increased ROS production and apoptotic cell death in TAK1-deficient keratinocytes.
|
3 |
16543409
|
We show here that SOCS-3 inhibits NFkappaB-dependent transcription induced by overexpression of the upstream IL-1 signaling molecules MyD88, IL-1R-activated kinase 1, TNF receptor-associated factor (TRAF)6, and TGFbeta-activated kinase (TAK)1, but not when the MAP3K MAPK/ERK kinase kinase-1 is used instead of TAK1, indicating that the target for SOCS-3 is the TRAF6/TAK1 signaling complex.
|
4 |
16543409
|
By coimmunoprecipitation, it was shown that SOCS-3 inhibited the association between TRAF6 and TAK1 and that SOCS-3 coimmunoprecipitated with TAK1 and TRAF6.
|
5 |
16543409
|
Furthermore, SOCS-3 inhibited the IL-1-induced catalytic activity of TAK1.
|
6 |
16543409
|
Because ubiquitination of TRAF6 is required for activation of TAK1, we analyzed the role of SOCS-3 on TRAF6 ubiquitination and found that SOCS-3 inhibited ubiquitin modification of TRAF6.
|
7 |
16543409
|
These results indicate that SOCS-3 inhibits IL-1 signal transduction by inhibiting ubiquitination of TRAF6, thus preventing association and activation of TAK1.
|
8 |
18810325
|
AMPKalpha, beta, and gamma), and their differential localization in response to stimulation in muscle; (2) the biochemical regulation of AMPK by AMP, protein phosphatases, and its three known upstream kinases, LKB1, Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), and transforming growth factor-beta-activated kinase 1 (TAK1); (3) the pharmacological agents that are currently available for the activation and inhibition of AMPK; (4) the physiological stimuli that activate AMPK in muscle; and (5) the metabolic processes that AMPK regulates in skeletal muscle.
|